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By using the extended phase space Hamiltonian Lie-transform perturbation method, Hamiltonian canonical
variables have been found to describe the motion of gyrocenters. A representation of the gyrokinetic equation
has been established in terms of the magnetic moriventhe total energyU, and the canonical toroidal
momentumP of the particle. This representation of the gyrokinetic equation is invariant with respect to the
gauge transformation of perturbation fields. It explicitly reveals the effects of toroidal symmetry breaking, and
it indicates the role that the perturbed canonical toroidal momentum plays in the gyrokinetic theory. In
particular, it is found that the free energy associated withy(M,U,P) [herefy(M,U,P) is the equilibrium
distribution function does not have any nonadiabatic linear driving to the axisymmetric modes.
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[. INTRODUCTION dpfo(M,U,P) does not have any nonadiabatic linear driving
to the axisymmetric modes. This is a very important issue in
One of the most challenging problems in tokamak con-plasma physics.
trolled nuclear fusion research is to understand the anoma- For example, therfi,n)=(1,0) (m andn are poloidal and
lous transport of plasmas induced by microinstabilities ortoroidal mode numbers, respectivegnd (m,n)=(2,0) glo-
kinetic-magnetohydrodynami¢MHD) modes. To systemati- bal shear Alfven eigenmodes discussed in Hefl] are
cally investigate this problem, the gyrokinetic equationclearly toroidal axisymmetric modes. Therefore, the excita-
(GKE) [1-14] shall be used to describe the kinetic responseion of these modes by energetic ions should be carefully
of plasmas to the modes. Many papers have been publishedexamined. Another example is related to the suppression of
to discuss the derivation of the GKE—-9]. Among these turbulent transport by the sheared flows; it has been recently
papers, the classical gyrokinetic thedfy-3] uses recursive recognized that the axisymmetric modes are very important
method and involves explicitly gyroaveraging the Vlasovin evaluating the anomalous transp®]. In understanding
equation; the modern gyrokinetic theofd—9] uses the the behavior of the axisymmetric modes, it is crucially im-
Hamiltonian Lie-transform perturbation methdd5-19. portant that there is no nonadiabatic linear driving to the
GKE's in all of these papers are represented in terms ofmodes withn=0. We observed that this important statement
noncanonical variables. was reached in Ref12] based on the classical GKB]
When linearizing the GKE, one considers a small deviaformulated with the eikonal ansatz. Clearly, the conventional
tion of the system from the toroidal equilibrium. For an axi- eikonal ansat{1-3] breaks down an=0. Essentially, a
symmetric torus in equilibrium, it is well known that in ad- modified eikonal ansatz was used in Rgf2] by assuming
dition to the magnetic momeni, there are two other that the poloidal wavelength is much longer than the radial
invariants of motion: the total energy and the canonical wavelength. However, it is the poloidal angle dependence of
toroidal momentun®, which are associated with the tempo- the perturbed fields that appears to linearly drive the axisym-
ral symmetry and the toroidal symmetry, respectively. Con-metric modes in the classical gyrokinetic thedty-3]; note
sequently, the equilibrium distribution function can be repre-that in the literature the diamagnetic drift frequengy used
sented as a function of these three invariants of motionin GKE is proportional tdk,, the poloidal component of the
fo(M,U,P), when the effects of finite banana widtiBW)  wave vectof13].
are retained20]. Therefore, in order to exploit this property  To resolve the issues raised above, PSKB’s DKE is not
of the equilibrium distribution function as much as possible,adequate since it does not include the effects of FLR. We
one is led to the consideration of canonical variables in forobserved that even far=0,1, the perpendicular wavelength
mulating the GKE. may still be comparable to the ion Larmor radius. It is un-
To investigate the effects of FBW on the kinetic-MHD clear whether the effects of FLR shall change the important
instabilities, Porcelli, Stankiewicz, Kerner, and B€éBSKB) statement drawn from PSKB’s DKE. Therefore, we have to
have discussed the formulation of the drift kinetic equationwrite the GKE in the form similar to PSKB’s DKE and make
(DKE) using (M,U,P) in dropping the effects of finite Lar- the GKE valid for arbitraryn. This has been partially solved
mor radius(FLR) [11]. PSKB’s DKE has revealed the effects in Refs.[10,22.
of toroidal symmetry breaking introduced by the perturba- In Ref.[10], Gorelenkov, Cheng, and RGCPF put the
tions; it indicates that the free energy associated wittclassical GKE[1] in the form similar to PSKB's DKE.
GCF's GKE is written in eikonal fornj10] and is based on
the classical gyrokinetic theoijyl]; it breaks down whem
*Email address: sjwang@mail.ipp.ac.cn =0,1. Therefore, GCF’'s GKE has not answered the question
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we have. In Ref[22], using axisymmetric cylinder geometry A. Canonical Hamiltonian formulation
and assumindg,=f,(U,P), Berk and Pfirsch have clearly of guiding-center motion
shown that the free energy associated wilio(U,P) does To begin our discussion, we write down the general rep-

not have any linear driving to the axisymmetric modes, eveltesentation of the equilibrium field in tokamaks.
with effects of FLR included. However, the general equilib-

rium distribution function in axisymmetric tokamaks should B=VyrXVo+VIXVy (1a
be fo(M,U,P). Therefore, the problem that we have is still
there. =g(PHVIHIPV O+ 6(,0)V i, (1b)

Another important advantage of PSKB’s DKE is that it is D=D(y,0) @)
invariant with respect to the gauge transformation of pertur- =¢4.0),

bation fields, although this was not explicitly indicated in whereB is the equilibrium magnetic field ard is the elec-
their paper. To our knowledge, all of GKE's for electromag- trostatic potential. ¢/, 6,¢) are the magnetic flux coordinates;
netic perturbations do not have this advantage, althougly, js the poloidal magnetic fluxg is the poloidal angle, and
some authors claimed or implied that their GKE had thisis the toroidal angley;= () is the toroidal magnetic

advantage, and this shall be made clear in the main text. fyx which satisfiesdy/di=q(), with q(y) being the
Since the modern gyrokinetic theof¢—9] is valid for  \ye|l-known MHD safety factor.

modes with arbitrary, we shall establish a GKE that has the  Gyiding-center canonical variables ad (P,P,;£,¢,6);

advantage of the modern GKE and the advantages qfj is the usual magnetic moment ardis the gyrophase

PSKB’S. DKE. o ) o _angle. The canonical toroidal momentt#hand the canonical
In this paper, beginning with the Hamiltonian canonical poloidal momentunP, are defined by

variableg23,24 (in contrast to the previous modern gyroki-

netic theory[4-9], where noncanonical Hamiltonian Lie P=gp—#, (38
transform was usgdwe shall use the canonical Hamiltonian
Lie-transform perturbation method to systematically estab- Py=Ip)+ 7, (3b)

lish a representation of GKE in terms d¥i(U,P). The rep- ) _ _
resentation shall explicitly reveal the effects of toroidal sym-Wherep =v /B, v is the parallel velocity. Note that with
metry breaking and clearly show that there is noEd.(3) we have
nonadiabatic linear driving to arbitrary axisymmetric modes, U= (PP, (42
in contrast to the previous classi¢al3] and moderrj4—9] ob
gyrokinetic theory. And the new representation of GKE is _
invariant with res i - pI=pI(P.Py). (4b)
pect to the gauge transformation of pertur

bation fields. The canonical Hamiltonian Lie-transform per-  Guiding-center Hamiltonian is written as
turbation method used in this paper may also be of interest to
readers working in general physics. 202

The remaining part of this paper is organized as follows. Ho(M,P,Py,0)= MB+§”II B+, ®)
In Sec. I, we briefly review the theory of canonical Hamil-
tonian variables and the Lie-transform perturbation methodwhere, and throughout this paper, we haveegsetm,=1 (&g
In Sec. Ill, we derive the canonical variables for gyrocentersandmg are electric charge and mass of the particle, respec-
(here and throughout this paper, following the terminologytively) to make the formulas concise. The physical formulas
of Brizard [4], we denote the guiding centers in perturbedcan be obtained by restoring the factorsegfand m.
field as gyrocentejsIn Sec. IV, we derive the new repre-  |n order to facilitate the following discussions on the per-
sentation of GKE. In Sec. V, we present limiting cases andurbed time-dependent system, we introduce the extended
compare them with existing theory. In Sec. VI, we discussphase spacgl6] (M,P,P,,—U;&,,6,t) and the indepen-
the invariance with respect to gauge transformation of perdent parameter. This is a well-known tactic in dealing with
turbation fields. In Sec. VII, we present the final gauge in-the time-dependent systefil6,7]. The fundamental one-
variant form of GKE. In Sec. VIII, we summarize the main form in this extended phase space can be written as
results and make some further discussions.

FOZFOi dZi (Ga

Il. REVIEW OF CANONICAL HAMILTONIAN =M dé+Pd{+P,do—Udt—hydr, (6b)
FORMULATION OF GUIDING-CENTER MOTION AND

LIE-TRANSFORM PERTURBATION METHOD ho=Ho—U, (60)

In this section, we briefly review the well-established where we have used the notationz*@?,z% 2
theory of canonical Hamiltonian formulation of the guiding- z°,2%,2°,2%,2°)=(M,P,P,,— U;£,£,6,t;7). The equations
center motion[23,24 and the Lie-transform perturbation of motion are readily found
method[15-19, based on which our following discussions
shall develop. For the details, we refer the readers to the a LA (78
literature. ar - oMo~ amo
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J J 7=7+G|+0(&2). 10
E_M_—o_'—ghoz—é’—gHO:O, (7b) 1 (85) ( )
And a scalar is transformed in the way
d J J — ; ;
$-6=55M0=55Ho, (70 f=f—Gldf/3z'+O(&5). (11)

To close this section, we emphasized that the Lie trans-
el ih . —iH —0 (7d) form provides the relationships of functions, therefore, in
d ar ' ar 0 practical calculation, both sides of each formula presented

here should be evaluated with the same argumigrés
J d
—@=—hy=—H,, (79
dr’ Py ° P, ° Ill. CANONICAL VARIABLES
q FOR GYROCENTER MOTION
J J
Fa _%ho: Tt (7f) In this section, we shall find the canonical transform from
the guiding-center coordinates to the gyrocenter coordinates.
d P Introduce the perturbation of the vector potential and the
gt= 3= U)hO: 1, (7gg  scalar potential written in the general form
g ; ; A=A ,(r 1) Vi+ SAy(r,1)V o+ SALr,1)V{, (123

8D =6D(r,t), (12b
Note that (-U,t) are a pair of conjugate variables.
Clearly, it is convenient to set=t and interpretU as the
total energy of the particlgl6]. Note that the three invariants
of motion are associated with three symmetries in the SEM
tem. Conservation oM results from the gyrosymmetny
independence dfly; conservation oP results from the tor-
oidal symmetry,{ independence oH,; conservation ofU
results from the temporal symmetiyindependence ofl.
To close this section, we remind the readers that this for-
mulation automatically guarantees the Hamiltonian charac- =ry+Iy, (13
ters of the guiding-center motion.

wherer =R+ p is the particle position, witlR the guiding-
center position ang the vector Larmor radius.

At this point, we clarify the orderings used in this paper.
ere are two independent small parameters: the ratio of the
Larmor radius to the scale length of the equilibrium magnetic
field, eg, and the ratio of perturbed field to the equilibrium
field, e 5.

The perturbed one-form is written as

with I'y given in the previous section. Here and throughout
this paper, subscript 0 denot@isg) and subscript 1 de-

) ) o ) notesO(es). We are at the position to emphasize thET]
The Lie-transform perturbation method is discussed in der0 is kept up t0O(eg).

tail in Refs.[15—19. Here we simply write down the formu-
las that we are going to use in this paper. Assuming that the
perturbed one-form can be expanded in powers gfa I''=6A-d(R+p)— 6P dt

small parameter, up (e ) we can transform the one-form
=(6Ay+ 6A-dyp)diy+ (6Ay+ A Jyp)d O

according to the rule
+(6A+ 6A- 9 p)d{+ (SA- Iyp)dM

B. Lie-transform Hamiltonian perturbation method

I’y is given by

To=T+dS, (83
B +(0A-dgp)dé— 6P dt (149
F1=T1=LalotdS,, (8b) = A%, dy+ 6A A6+ SAY d{+(SA- dyp)dM
[=To+I1+0(£?), (80) +(SA- dgp)dE— 5 dit. (14b)
[=Ty+T;+0(e2), 8d) E;)te that we have retained in E@L.4b) the A term defined
whereL Iy is a one-form that is given by Az(ﬁAjj dy+ 6A% o+ 5A2‘ d?)
N V) —(8A, dg+ SA,dO+ 6A,d?) (153
(LiT'o)i =G} —,——') ©) ' ’ ‘
gz oz = 5A-dyp it OA- dupdo+ SA-9,pdl, (15b)
with Gjl known as the Lie-transform generating vector. The
phase space variables are transformed by Equation(14b) can be put in the form
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J
9Pt o5 /

—dP

~pdP |+ oA} do+ sAf d¢

r,= 5A*<

+(S5A-dup)dM+(SA-3p)dé— 50 dt.  (16)

Now we can carry out the Lie transform up to the first
order ing 5. To do this, we choose
d$=0, 17

and consequently

[o=To+0(sd). (189)
In Eq. (18), we have explicitly indicated theﬁo andIl', are
kept up toO(eg). Since we do not want to transfortrand
the system is independent of we set

Gi=0=4S/dU, (199

GI=0=0Sdr. (19h)

We shall make a symplectic transform to transfer all of theﬁ1
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6o=0Hqy/ P, (22b)
Lo=0dHq /P, (220
Eo=0Ho/IM. (220

Note that every term in Eq22) is independent of§, {,t).
To make the transformed one-form independent of the gy-
rophase, we choose

Hy=(80)=(8D) — (1ho( 5A}) + O SA% ) + Lo SAT)

+Eo(OA- ,p)), (23
where(- - -) denotes gyroaveraging.
It is not hard to recognize that
£o(6A- 9ep)~O(s3). (24)

To understand Eq(24), it is helpful to have a look at Eq.
(380). Now we can examine the contribution of theterm to

Using 6o/&~O(es), (SA-d4p)/(5A-9p)~O(es)

perturbations to Hamiltonian. To do this, we have the generand similar equations, one can find that

ating vector

Gi——| on. 20 7S 20
oM M)’ (209
9S,\
*
Gi= <5A¢ alp)aP (20b)
9S,\ o
*
Gi= (5A¢ M/)&Pa, (200
&p (981
Gl'=6A-— 20
g G (200)
S
P 1
Gi=5A% a (200
GPi= oA+ L (20f)
! T
GY 5@—‘9—81 (209
at

And the transformed first ordéin & ;) one-form is given by
(213
Hy= 80— (0y+ Yody+ Ood g+ Lod + E00) Sy, (21D)

8= 8D — g0} — 0g5A} — LoOAE — £gOA- I;p,
(219

where the overdot mearmidt, and

o=—Hogld6(l P ), (229

($oOA- 3yp+ 0gSA- 9 gp+ LoOA - 9,p) N
§o(OA - 9¢p)

Combining Egs(24) and (25), we conclude that the contri-

bution of theA term toH1 andl“l is ~O(sB) However I‘o

has only been kept t®(eg) [see, Eq(18)]. Clearly theA
term cannot be self-consistently included, it has to be
dropped. We shall set

O(&3). (25

(OA% ,6A% ,6A%)=(5A,,6A,,6A,). (26)

The final gyroaveraged first ordén &) Hamiltonian is
written as

Hy=(8@)=(5®)— (o OA )+ Oo( SAp) + Lo OA;)
+ & SA- 9;p)). (27)

Note that the discussion on the reason why fhéerm
should be dropped has been similarly made in Ref] in
deriving the final first order Lagrangian for DKE. The equa-
tions of motion are readily found,

dM/dt=0, (28a
dU/dt=d,H;, (28b)
dP/dt=—d;H;. (280

Accordingly, we have the governing equation &y, the
gauge function of the Hamiltonian Lie transform,
o=+ Pody+ Opdg+ Lod + E0de) Sy, (29

whereSo= 8¢ —(5¢).
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Following the previous gyrokinetic theoffy,7], we tempo- It is well known that the distribution function in terms of
rarily approximate the solution to ER9) as gyrocenter coordinated, is independent of the gyrophase
. — angle¢ [7,17]. Therefore we have
50&581% 5(,0, (30)

which indicates that ﬁ+d_U f9_f_+d_P 3_f_+% 5’_f_+% 5_“_:0' (35)
. . . . —_ e — ot dt gy dt gp dt 59 dt 57

9S1~ Y09 ;S1~ 000 4S1~ L09;S1< 09 Sy~ 6D ~ iy oA,
where Eq.(289 was used. Equation&8b,0 indicate that
dU/dt=0+0(e5) anddP=0+O(e ;). Therefore, expand-

The essence of this approximation will be made clear in Sedng in terms ofe 5, we have

VII.
With the help of Eq(26) and the approximate solution to f=fo(M,U,P)+5f(M,U,P,0,(,t), (369
Eqg. (29) [Egs.(30-31], we obtained
—~ o~~~ o~ d _ _ _
(329 0
Gi~ 50, (32h) (d) a+(d5) P +(dz) p 350
—| ==t 57| —=*+| 7 — C
GJ'?% 5A§. (320 dt o ot dt 00 dt 0 9L

The other components of generating vector and equation 1ransforming back to guiding-center coordinates, we
of motion will not be used in the following discussions, have up toO(e )
therefore we do not present them here.

We have retained in Eq&7) and(32) the drift terms that _ wofo o _pdfo
were previously neglectdd —10]. To make it clear, we write F=1o(M,U,P)+G; oM G1 Ut G P of,
_ . . . . (379
Hy=(6P) = (o A,) + 0o 5Ag) + Lo 6A,) + €o( OA - I¢p))

) d . .

= (0D = V| 6A|= §gdA - dzp) =V 4 (6AL), (33 310F =~ (Qutodi= dpfad ) ((6P) = Yho( A, — O 5Ay)
with 5A=5AHb+5AL,5AH=b~5A; VHb-‘t-Vd:dR/dt, V|| o o .
—b-dR/dt; b=B/B. Note that althoughVy~O(eg), we Lo(0A) — £o{ A O¢p)). (37

0 i -1
haveVy- 8A, ~O(eg), since 5ALNOLSB ). Therefore, to whered/dt is the time rate of change evaluated along the
be consistent with the ordering df, in Eq. (18), the  unperturbed guiding-center orbit.

V4- 6A, term should be retained iﬁl. Note that Eq(37) can be used for electromagnetic modes
To close this section, we point out that, theterm can be  with arbitrary toroidal mode number. It clearly reveals the
systematically dropped without changing the Hamiltonianeffects of temporal and toroidal symmetry breaking. Every
character of the dynamics, while thé;- SA, term cannot term in these equations has its own unambiguous physical
be. More discussions on this term will be made in the fol-interpretation. The adiabatic part of the perturbed distribu-

lowing. tion function in Eq.(373 is completely determined by the
perturbations of the magnetic moment, the total energy, and
IV. NEW REPRESENTATION OF GKE the canonical toroidal momentum; the coefficients of
afgloM, dfqloU, and df,/dP are the perturbations d¥l,
Before deriving the GKE, we point out that among the y andP, respectively. The nonadiabatic part of the distribu-
eight variables used in the extended phase space, there agn function, 5f, is purely due to the nonconservation of the
only six independent physical variables as was discussed ifgtal energy and the nonconservation of the canonical toroi-
Ref. [16]. To derive the GKE, instead of using the coordi- ga| momentum introduced by the perturbation of fields. It is

nates M,P,P,£,6,4;t) we shall use the coordinates clearly shown that, within the frame of linear gyrokinetic

(M,U,P,£,6,(:t). The Vlasov equation in these coordinatestheory, the free energy associated wighf, (M,U,P) does
can be written as not nonadiabatically drive any axisymmetric modes.

of dM of duU of dP of déaf de of V. LIMITING CASES

-ttt =t ==+ ——=
gt dt gm dt gy dtgp dtge dt g9 In order to compare the new representation of GKE with

dz of the existing theory, we present three limiting cases in this
2 -0 (34)  section. For readers who are not interested in the details of

dt a_z_ ’ comparison, this section may be skipped.
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A. Eikonal form Ji(k. p)

k, pl2

M&B,. (400

dR
To explicitly evaluate the gyroaveraging used in the pre- a E_vb) VIpdPetio
vious section, we introduce the eikonal ansatz following the
conventional way[1,14], (6®,5A)~exp(k, - p), with k; Note that a few of the misprints in R€f10] [Egs.(12)—
being the perpendicular component of the wave vector. Thefil4) therd have been corrected. Note also tHg=—P,
it is merely a simple mathematical exercise to verify that which is due to the different definitions used in Réf0] and
in this paper. Usind=gV {+ VXV ¢, one can show that
(0®)=Jo(k p) D¢, (383 the three terms involvingf,/dP, in Eq. (408 can be put
into the following form:

(A =Jo(k p) AL, (38b)
dfg[ VPXb ig [
(K. p) Pl B ~5A+ﬁb-V5<I>—Z&§JO§d>C
__Juky ¢
(6A-9p)=— k. pi2 M 6B, (380 (41)
Usingd;=—iw and—b-V §® +iwdA ;=0 in accordance
whereJ,,J; are the zeroth order and the first order Bessel t 1>
functlonos 1respect|vely SB=b-Vx 5A; the subscriptc with Ref.[10] to restored; and 6A, redefining the nonadia-
means the corresponding quantity is evaluated at thBat'C part of the perturbed distribution function as
guiding-center position. Jf ®
Now we can write the new representation of GKE in the Sf= 5f__°( 1__*)305(1%, (42)
eikonal form as Ju @
af of and finally usingP instead ofP, [changing the signs ab,
f=1y(M,U,P)+ 6f + 6O U+5Ag F? and the last two terms in the bracket in E¢l)], we ob-
J tained
1 Jqi(k
E{_ |l<( l/Z)MéBCJr(&I)—JOﬁ(I)c) g dfg( g SAXb
P f—f0+5f+mﬁq)+ap 5AH -VP
R (5A—JoSA )rfo (393 oo 1] Jukep)
Tdt BTV 0 1K p B
+<9M 5 W M B+ (8P —Jy6D,)
d dR
a&c —(dyfodi— anOag) Jo| 6P~ dt < OA; —UH(5A|‘—5AHC) , (439
Ji(k,p)
————~MéB,|, 39h d
kLp/Z ¢ ( ) a5f (ﬁufo(?t_ﬁpfo(gg){Jo(aq)c_U5A)
with d/dt evaluated along the unperturbed guiding-center or- Ji(k, p)
bit. In obtaining Eq.(39), we have used Eq32). k. pl2 M 534- (43b)
2l

To compare EQ.(39 with Ref. [10], we need some
lengthy mathematical manipulations, which are briefly sum-
marized as follows. First, we write down the relevant equa-
tions in Ref.[10] as

Using VP=—-V 4+ 0O(eg), it is easy to show that

g SAXb
E5A||+—B -VP= 5A§. (44)
. | dfg dfp 1 i g dfg
f=fo+6f+| —+—=| 1+ v||b V|+=——=Db-V o _ _
U IM B Bw P, Substituting Eq(44) into Eq. (433, we obtained the re-
afo 1 35(K, p) sulting equations, which agree well with E@9). The only
X(6D —Jy6P ) — AL it A Y| 8B, difference is that we have kept théy- 6A . and V4 6A |
M B k. p/2 terms in Eq.(39). As we have pointed out, these two terms
VP.Xb afe i af, are not included in Refl1], which is the starting point of
é «(SA?—B— ?Vsz b-VJy6d., (409 Ref.[10]. More discussions on this point will be given in the
P Bo b, next section.
%57‘ =%< 1—%*) X, (40b) B. DKE form
Dropping the effects of FLR, we can obtain the DKE.
0f /9P This can be done by setting
w0, = d,. (400 _
af /oU Jo(k, p)=1, (453
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Ji(k,p) dyfo
K, pl2 =1, (45b W, = — Im ¢ (50b)
0P=6D, (450
We are at the position to make some remarks ondhe
SA=5A.. (45d)  termin the GKE. Conventionally, when using the local Max-
wellian distribution f,(U,#) as the equilibrium thermal
The resulting DKE reads plasmas distribution or using the slowing-down distribution
fs(M,U,y) as the equilibrium fast ions distributiony,
afy 6B dfy «4d, in the GKE[13,25. However, recently, when retaining

ot
f=fy+ 5f+m5q)—mME+ﬁ5A§, (469

the effects of FBW, it is shown tha, >=d, in GKE [10] or
in DKE [11]. To clarify this important controversial issue,
d drR first we go back to Ref{10]. Note that the classical GKE,

G107 =~ (dufodi=dpfod,)| 6P = GA+M 55)1 Eq. (7) in Ref.[10], agrees with the modern GK[Eq. (35)

(46  in Ref.[7]]. When substituting (U, ) or fs(M,U, ) as

the equilibrium distribution in the GKIEEQ. (7) in Ref.[10]

which agrees with Ref[11]. This representation of GKE or Eq.(35) in Ref.[7]], one getsv, % d,, as in Refs[13,25.

exactly recovers, in dropping the effects of FLR, the DKEWhen substitutingfo(M,U,P) as the equilibrium distribu-

[11] including theV4- A, term. tion in the GKE[EQ. (7) in Ref.[10]], one getsw, *d,, as
was shown in Ref[10]. The point is thatf,,(U,y) or
C. Small-banana-width limit fs(M,U, ) is not a true equilibrium distribution in an axi-

Finally, it may be useful to present the Sma"_banana_symmetrlc torus, since it is not a constant of motion. There-

width limit of the new representation of GKE. Dropping the fO'€: ©One should be careful when usinig,(U,y) or

effects of FBW in Eq/(37), we may make the replacement fs(M,U, ) as the approximate equilibrium distribution. It is
well-known that it is important to keep the Hamiltonian char-

[Im 9y ,dp]fo(M,U,P)—[dy,dy,—dylfo(M,U, ). acter of the motion in deriving the GKE. And the Hamil-
(47 tonian character is clearly kept in deriving E§7). There-
fore, the o term in the GKE is associated with the

Note that a similgr small-panana-width approximation has,onconservation of the gyrocenter energy andaheerm in
been made and discussed in R&fl]. Then Eq.(37) reduces  {he GKE is responsible for the nonconservation of the ca-

to nonical toroidal momentum of the gyrocenter. Cleadgly
« g, is related to the Hamiltonian character of the motion, it
f:fo('\"*U"/’)Jr’”+G3A‘9Mf0+Gfan0_Glpﬁwf0*48 should not be violated. In substituting,(U.¢) or
(483 ¢ (M,U,y) as the equilibrium distribution in the GKEE.
(7) in Ref. [10] or Eq. (35) in Ref. [7]], the Hamiltonian
%(ﬁ: —(dutodit d,f00,)(59). (48b) character of th.e 'motion is lost, since neittfgy(U, ¢) nor
fs(M,U,y) satisfies the lowest order GKE for an axisym-
metric torus. In obtaining Eq50) through making the re-
In most practical cases, when the effects of FBW areplacement, Eqi47) in Eq.(37), the Hamiltonian character of
dropped, the Maxwellian distributiofy,(U,) may be used the motion is safely kept, since the, =J, term in Eq.(50)
as an approximate equilibrium thermal plasma distributionis indeed related to the nonconservation of the canonical to-
and the slowing-down distributiohs(M,U, ¢) may be used roidal momentum of the gyrocenter introduced by the pertur-
as an approximate equilibrium fast ion distribution. Sincebation. It was pointed out by LittlejohfiL7] that the GKE
dufmd(de) or dyfsdSe) is merely a damping term, as is should be understood as a representation; similarly, we point
well known, we may conclude that there is no nonadiabati®ut here that Eqs(47) and (50) should be understood as a
linear driving to any axisymmetric modes, with the Maxwell- representation rather than an approximation.
ian distribution or the slowing-down distribution used as the To close this section, we point out that the incorregt
equilibrium distribution. %3, in the literature[13,25 is not due to an error in the
To compare Eq(48) with the existing literatures, we as- original GKE’s[1-9]; it is due to the carelessness in using
sume fm(U,¥) as the approximate equilibrium distribution, as has
been discussed in the above paragraph. However, the GKE’s
(dp)~exp(—iwt). (49 in Refs.[1-4,6—9 do not include the/4- (A, ) term in the
) first order(in &) gyroaveraged Hamiltoniakl,. The GKE
Then Eq.(48b) can be written as in Ref.[5] has included the drift term induced by the equi-
q librium radial electric field, but it has not included the drift
e term induced by the inhomogeneity of the equilibrium mag-
gt =i ©x)dufolde), (503 netic field. And all of these GKE’s are not invariant with
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respect to the gauge transformation of the perturbation fields According to Eq.(8b), the Lie-transformed’ - , is changed
in toroidal geometry, as will be discussed in detail in the next,y the gauge transformation

section.
VI. INVARIANCE WITH RESPECT TO GAUGE
TRANSFORMATION OF PERTURBATION FIELD

A. General remarks on gauge invariance

Now, we shall discuss the invariance with respect to NOW, one can run the derivations described in Sec. Il
gauge transformation of the perturbation fields. again. The only dlfferenc_e is th&; |n.Sec. [l is symboli-

It is well known that the gauge transformation of the vec-cally changed t&; . The final results in Eq427)-(29) and
tor potential and the scalar potential of the electromagneti€onsequently Eq(37) do not change, they are still deter-
fields does not change electromagnetic fields themselves af@ned by G A,5®).
does not change the Hamiltonian dynamics. This is very SO, beginning with §A’,6P"), one may obtain the final
clear in Hamiltonian formalism, since the gauge transformaGKE that is identical to the GKE fordA, 6®). Therefore,
tion only adds a total differential to the fundamental one-for one physical problem, we have two formally different
form and adding an arbitrary total differential to the funda- GKE’s. However, from the above discussions, one can see
mental one-form does not change the Hamiltonian dynamicghat both the GKE’s follow the same Hamiltonian formalism.
However, at first sight, it seems that there might be somd herefore, the dynamics is the same. We may draw the fol-
problems in making our formalism gauge invariant. Since dowing conclusion, which shall be referred to as an equiva-
general gauge transformation introduces a time-dependefince theorem.
component to the scalar potential, the unperturbed Hamil- If any (6A’,6®’) can be related to JA,6®) by the
tonianH, becomes time dependent; it seems that we lose th@auge transformation E¢2), then the GKE for §A", 6P")
three important constants of motion. Of course, this is not thés equivalent to the GKE fordA, 6P).
case; one can verify that the three constants of motion are Now, for a given §A’,5P"), one may do a gauge trans-
still there. However, this clearly makes the unperturbed sysformation, Eq.(52), to reach ¢A,5P). Equation(12) guar-
tem formally time dependent and unnecessarily makes thantees that there are no constraints on this gauge transforma-
problem complicated. This unnecessary complication can béon, and that through the gauge transformation &), any
avoided by the following scenario. (6A’,6d'") can be related todA,5P) represented in Eq.

Since the system equilibrium state is physically time in-(12). The equivalence theorem guarantees that the GKE
dependent, we do not want to introduce any gauge transfoneeded is exactly Eq37).
mation to make the unperturbed system mathematically or Therefore, we concluded that our GKIEg. (37)] does
formally time dependent. We shall choose a specific gauggot depend on a specific gauge of the perturbation fields; it is
[23,24 to display the three constants of motion as clearly agnvariant with respect to the gauge transformation of pertur-
in Sec. Il A. We only allow gauge transformation of the per- bation fields.
turbation fields. Given the perturbation fields

B. Importance of the V4-6A , term

SB=V X 8A, (513
Now, we can clarify why it is important to keep the
SE=—3,0A—V D, (51  Va-0A, term in the GKE.
Simply, whenV4=0 or a gauge is chosen so théA
we make the following gauge transformation: =0, theVy- A, term can be dropped out of the GKE. Gen-
erally V4#0, so this term cannot be dropped for a gauge
SA'=56A+V g9(r,t), (52a 6A, #0. The mathematical reason is that, although
Vy- 5AL /VH5A||~O(SB) (when |5AL| ~ 5AH), Vy- 5AL
6P =6D—9,59(r,t). (52b ~0(&9) cannot be dropped since we have to keep any

O(sg) term in the fundamental one-form, as has been dis-
Note that GA, D) have already been written in a general cussed in Sec. lll. The physical reason is more fundamental;
form in Eq. (12). So “the GKE for (6A’,6®')” can be in dropping this term, one breaks the Hamiltonian structure
directly written out by replacingdA, 8®) by (5A’,6®") in of the dynamics and consequently loses the property of
“the GKE for (5A,5P).” gauge invariance.
However, the GKE for §A’,5®') may be obtained in a The GKE's in Refs.[1-4,6-9 do not include the
different way. With the gauge transformation of the pertur-Vy4-(SA,) term in the first order(in e5) gyroaveraged

bation potentials, the first order fundamental one-form giverqamiltonian,H,; the GKE in Ref[5] has included the drift

in Eq. (16) is changed to term induced by the equilibrium radial electric field, but it
has not included the drift term induced by the inhomogeneity
I'y=Ty+dr-Vég+a,69(r,t)dt (538 of the equilibrium magnetic field. And all of these GKE's are
not invariant with respect to the gauge transformation of the
=I';+d&sg. (53b perturbation fields in toroidal geometry.
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To make this point clearer, we shall discuss two typicalpoints (w, *d, and w, =d, discussed in Sec. V)@ive the
papers in more detail. One is typical of the classical GKEsame resulf26,27, since&, ~exp(6—i?).
[1], the other is typical of the modern GKRB]. In both these
papers, the/4-(5A, ) has not been retained. In R¢l], it
was explicitly indicated that the derivation does not depend ) .
on any specific gaugisee, notes after Eqé41) and (42) in Itis useful to show how to recover thé;-(5A,) term in
Ref.[1]]; in Ref.[8], the authors did not indicate a specific the first order(in &) gyro-averaged Hamiltonian within the
gauge. To clearly show that these GKE’s are not gauge inframe of Refs[1,8].
variant, we shall make an example. First, let us look at Ref[8], which is a typical paper on
It is well known that for ideal MHD shear Alfven wave the modern gyrokinetic theory.

perturbations, the perturbation fields can be described by two We shall examine Eqg¢11) and (16—19 of Ref. [8]. In
different gauges, their Eq. (11), our A term was dropped by neglecting the

inhomogeneity of equilibrium fields. In their Eq€L6—-18,
oB=VX(56A), OA=05Ab, (558  ourVy-(SA,) term appeared. Note thaty; comes from the
inhomogeneity of equilibrium fields. In their E¢19), the
O0E=— 9 6A|b—V 5P, (55D V4-(SA ) term was dropped by neglecting the innomogene-
ity of equilibrium fields. Clearly, the self-consistence of Ref.
b-SE=0, (550  [8] in neglecting both the term and theVy-(SA,) term
was related to neglecting the inhomogeneity of equilibrium
até:@Exb (550 fields. Note thatvy was still retained in the propagator in
their GKE [see, their Eq(41)]. As we have shown in Sec.

with £, being the usual perpendicular component of the idealll, it is unnecessary to neglect the inhomogeneity of equi-

C. Recovering the V- 6A | term

MHD fluid displacement; and librium fields. It is due to the fact that the contribution of the
A term to the gyroaveraged Hamiltonian is@fs3), which
SB=VX (£ XB), 6A=¢ XB, (569 Isirrelevant, that thel term can be systematically dropped.
Therefore theV4-(S5A,) term can be self-consistently re-
SE=—d,(E, XB), D=0, (56b) tained in Eq.(19) in Ref.[8].

Second, let us look at Rdfl1], which is a typical paper on

In the well-known paper on fishbone modes] Chen, the classical gyrokinetic theory. _
White, and Rosenbluth applied the GKE] with the gauge We shall examine Eq$35-41 of Ref.[1]. Itis not hard
Eq. (55a,b and they obtained the well-known result. How- t0 recognize that the neglecting of thg-(JA,) term in
ever, if one used the gauge H§6) in applying the GKE1] their Eq.(41) is closely related to _the third Ilng of their Eq.
to solve the same problem discussed in [R26], one would ~ (40). Therefore, we write down this key equation.
not obtain the correct result. This is undoubtedly due to the N
fact that the GKE in Ref1] is not gauge invariant. It can be (Vi expliL))=(iv, [kp)Ja(k v, 1)k, XD, (57)
similarly verified that the GKE in Refl8] is not gauge in- ity L=k, -bxv.
variant either. _ L _ We observed that E457) implies thatv, has been taken
Wlth the effects of FLR ignored, it is _stralghtforw_ard 10 55 a constant. This implies that
verify that our GKE gives same results with the two different

gauges given in Eq55) and Eq.(56); the resonance inter- (v,)=0. (598
action between the energetic trapped ions and the internal
kink mode is proportional t&/4- 5E, . In dropping the ef- Note thatv is the particle velocity. It is well known that

fects of FBW and FLR, our results obtained with the two EQ. (58) is true only to the zeroth order ing. To the first
different gauges agree with Rg26]. As we have shown that order ineg, we have

our GKE agrees with Refl] when A, =0, the procedure

to use Eq.(55) in our GKE is similar to Ref[26]. It is (v,)=Vq. (59)
similar to running from Eq.43) back to Eq.(40), some
mathematical manipulations that have not been displayed in
Ref. [26]. Since we have shown that our GKE agrees with

This indicates that, to the first order &, we should use

Ref.[11], the procedure to use EE6) in our GKE, which is Vi=Vatvi, (603
simpler than using Eq55), is similar to Ref[11]. The only ~
exception is that the initial conditiod =0 used there is {vi)=0, (60D
unnecessary in our case. ~

To close this section, we point out that even for ideal Vi =lvi|=v, . (609

MHD shear Alfven wave perturbations, gauge invariance ca

provide considerable convenience. From our discussion learly, to first order ireg, Eq.(57) may be replaced by

above, one can see that using the gauge (E). is more voexaiL )= (iv. /k)J«(K.v. /K, Xb
convenient than using the gauge E8p). It is also interest- (ViexpiL))= (v, /) Iu(kivy 10k,
ing to note that, for fishbone modes, the two different view- +Vgdo(k v, 1Q), (61
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With this replacement, th¥-(SA, ) term can be easily SA(r,1)=8A (1 1) V i+ SA,(r,1)V 6+ SAL(r,H)V{
recovered within the frame of ReffL]. » , »
To close this section, we point out that without the de- =[0A,(r,t)+ oA, (r,t) IV +[ A (r,t)

tailed comparison analysis discussed above, it is very easy to 7 R 7
miss theV4-(S5A, ) term in previous GKE's. T oA DIV OF[SA(r, ) + oAV,
(643

SAL(r,t)=SAL(r,HV i+ SAY(r,H)V 0+ SALr,HV{

VII. GAUGE INVARIANT FORM OF GKE

To completely resolve the issue of gauge invariance, we

have to directly verify that the perturbed distribution func- =[d,0a(r,t)]Vy+[dy0a(r,t)]Vo
tion in terms of the guiding-center coordinafeis invariant
with respect to the gauge transformation. To determine the +[ 6a(r, )]V L. (64D

perturbed distributior, the GKE, Eq.(37), is not complete;
we need to determine@)!,GY,GY), the generating vector
of the Lie transform. At first, we use the approximate

We shall also make the following decomposition:

ST_STRSIT

(GM,GY,GP) given in Eq.(32), which is based on Eq$30) 0p= 09"+ ¢, (653
and (31) and equivalent to the previous thed®,7]. In the P
last two sections, we have compared E2) and(37) with S1=S+3, (65b)
previous GKE’s in detail, and we have resolved the only y MR .
difference, thevy- A, term. Gi Gy Gy

Acc_ording to the g_eneral remarks on the gguge_invariance Gf _ Gf'R n G&J,I , (650
made in the last section, we expected gauge invariance of the b bR b7
new GKE, combination of Eqg37) and (32). Now, we are G, Gy’ Gy

at the position to verify the gauge invariance of the perturbed P
distribution functiorf in terms of guiding-center coordinates. ‘§gR=35HR— %EER_ N ZOZ;\A;R_ £,0AR. dep,

Unfortunately, the results show that the gyrophase-dependent (663
part off in guiding-center coordinates is not gauge invariant.
To resolve this problem, we first go back to reexamine the

ST SRI_ 7 SRT 9 FRT_ v SRT_ 7 SAZL. 5 -
general remarks on the gauge invariance made in the last 0= 0D tho SRy~ Bg0Ry = Lo0A; — £0OA™- Ip

section. We understand that it is the formalism of the Hamil- (66D
tonian Lie-transform that is gauge invariant. Therefore, if we . . . ) —~
had not introduced any approximations when deriving the == (0t hodyt 0odpt Lod + Eody) Oar.
GKE by the Hamiltonian Lie transform, we should have ob- (660)

tained a gauge invariant form of GKE. Guided by the genera
remarks on the gauge invariance, we recognized that it i
important to have a proper solution ® (known as the
gauge function for the Hamiltonian Lie transforfisee Egs.
(54) and (29)]. Consequently, we have identified the prob-
lem, which lies in the approximation made in E¢30)—(32).
The problem is resolved as follows.

Using Helmholtz's theorer28], we decompose thg per-
turbation vector potentiadA into two parts; one padA™ is ) : ; ;
rotational(vortex componentand the other padA? is irro- (9t thody+ Bodg+ Lod+ Eode)
tational (source componeht

writing Eq. (660, we have used Eq#3) and(64) and the
relation[14]

Substituting Eqs(65a,b and(66) into Eq.(29), we found
Sh

St

b
SA(r,t)=SAR(r,t)+ 6AT(r 1), 62 = . . . . o~ (69
V- 8AR(r,t)=0, (62b) i 7. ,
The solution toS; is readily found
SAL(r,t)=V Sa(r,t). (620 —
Si=-%a. (69

And the perturbation scalar potentiéd is accordingly de-
composed into two parts And the solution t(Sf is obtained by following the previous
approximation4,7]

SD(r,t)=6DR(r 1)+ sDI(r,t), (639
£00:SF~ 5" 70
SDYr,t)=—d,a(r,t). (63p  ColeSrToe (703
Writing the perturbation vector potential in covariant repre- = 5DR— gy SRR — 6yoA) — Zoﬁ?—fom,
sentation, we have (70b)
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GSE~ o0y S~ 000 St~ L9 Sy <99 Sy~ DR

With the solution ofS; obtained above, we found the
generating vector for the Hamiltonian Lie transform,

1 o
GY'"R~ (AR 9,p)+ E(&bR— YodA) — 00A; — LAY,

(723
Gy R~ 607, (72b)
Gy *~6AY; (729
Gl=o, (7339
Gy = (6D, (73b)
GP'=(8A). (730
In writing Eq. (733, we have used Eq67) to obtain
(OAT- 9p)=(V Sar- 9ep)=0. (74

Now, we can write down the gauge invariant representa-

tion of GKE,

of
f=fo(M,U,P)+ 5f+(5<I>R+<5<I>I))&—J

afg
+(OAT+(0A]) -5
R 1 —r - ~r_ xR
+|(6A™- 9p) + E(ﬁ(I) — oA, — 0y6A,
. Jd
TR 0
—{o0Ay) M (75a
d Ry
a&f:_(aufoat_apfoﬁg)(Hl+H1), (75b)
HE=(80™) = o SA) — 8o SAL) — Lo SAT)
—&(SAR- 04p), (750

HI=(5D7) — o SAL) — Bo( SAL) — Lo( SAD).  (750)

In writing Eq. (750, we have used Ed74).

PHYSICAL REVIEW E 64 056404

HI=(80%) — o SA,) — Bo( SAL) — Lo( SAD) (760

d
= —a(5a>. (76b
Clearly, 6f can be decomposed as

5f = 5t R+ 57, (773

d R 4R
aéf =—(&Uf08t—&pf0&§)Hl y (77b)
5fI:((9ufol9t_(9pfoag)<5a> (770)

= _<5(DI>0-'U'fO_<6A§>O-'pf0

(770

In writing Eq. (770d), we have used Eq#63) and(64). Com-
bining Egs.(759 and(77), we obtained

afg afg 1
_ R r70 rRY'0 R. il R
f=fy+ 8+ 6D 70 + 6A; (9P+ (A a§p>+B(5¢>
Cmr o ~r o ~r. | 9fo
d R gR
agf :_(aufoat_apfan)H y (78b)
H?E ( 5(DR> - l.//o< 5A7(;> - 90( 5A§> - Zo< 5A7gz>
— &o( AT 0;p). (780

Therefore, we have proved that the final perturbed distribu-
tion functionf in terms of guiding-center coordinates is in-
dependent of §®&Z, 5AY).

Noting that gauge transformation is equivalent to choos-
ing different (5®Z, 5SA%), one can immediately conclude that
the new GKE, Eq(75), is really gauge invariant.

A particular example may be useful for the readers to
understand the importance of gauge invariance. Consider
(6D, 8A) = (8L, 6A) or (6D, 5A%)=(0,0). For this par-
ticular case, our gauge invariant GKE, E@5), gives f
=fq, No perturbation to the distribution function. This can be
easily understood as follows. Sincéd®,sA)= (5P, 5A)
gives (6E, 6B)=(0,0), the system is physically at its equi-
librium state. In this senses®Z, 5A%) may be referred to as
the “imagined” perturbation to the scalar and vector poten-
tials; they do not have any contribution to the perturbation of
electromagnetic fields,dE, 6B).

Now, it is clear that the previous approximdi&7] S;
[see, Egs(30) and (31)] is only proper for the Coulomb
gauge[ V- 8A=0; (6d%,6AT)=(0,0)]. The combination of
Egs.(37) and(32) is equivalent to ignoring the superscrigt

Finally, we are at the position to verify that the perturbedin Eq. (78). With the Coulomb gauge chosen, the new gauge
distributionf in terms of guiding-center coordinates obtainedinvariant GKE, Eq.(75), recovers the combination of Egs.
by Eq.(75) is really invariant with respect to the gauge trans-(37) and(32) and consequently recovers the previous GKE's

formation. This is accomplished as follows.
Using Eqgs.(63) and (64), we write Eq.(75d) as

[1,8] after having picked back thé,- 5A, term neglected in
Refs.[1,8].
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In applying the gauge invariant GKE with chosen that it is not clear what is equivalent in classical GKE to the
(6®,5A), one may decomposesP, sA) into (6%, 5AR) S, function in modern GKE, and facing the dauntingly

and (6%, sA%) by using the following relations: lengthy tensor analysis employed in Rf], which is known
as the most concise presentation of the derivation of classical
SA(r,t)= SAR(r,t)+ SAL(r 1), (798 GKE’s, we have not tried to consider how to recover the
R 7 _ gauge invariance in the classical GKE’s. This may be left as
SD(r,t)=6DR(r 1)+ 6DL(r,1): (799 3 topic for future investigation.

To close this section, we briefly summarize the three lim-

2 _ .
VZ0a(r,)=V-5A(r,1); (799 iting cases of the gauge invariant representation of GKE, Eg.
(75).
7 —
SAT(r,1)=V da(r,1), (799 The eikonal form of the gauge invariant GKE reads
SDI(r,t)=—d.8a(r,t). (790

fzfo(M,U,P)+5f+(5<I>R+J05<I>§)a—fO
If V-8A(r,t)=0, one may use Eq78) with the superscript Ju
R in Eq. (78) ignored. ofy 1
According to the above comparisons and discussions, Eq. +(5A7;+ J05A§C)—P+ B
(78) (with the superscripR ignored agrees well with Ref. J
[1]; the only difference lies in th¥ - A, term neglected in R
Ref.[1], and we have shown that this neglected term can be +(5®R—J05‘P§)—a -(SAR—J,5AT)
picked back within the frame of Refl]. Since the GKE
presented in Ref.1] is so well known and so widely used, (813
we shall discuss the validity of this GKE in detail. g 4R
First, as we have pointed out in the last section, the _
V4- 8A, term should be picked back whe¥A, #0. After a‘Sf__(anoat_anoag)[‘]o( obe- E'(SAC)
having picked back th¥y- A, term, the GKE in Ref[1] is
equivalent to Eq(78) (with the superscripR ignored. It is n Ji(kip) M SB } (81b)
useful to note that even A, #0, neglecting the/4- 6A | k pl2 ‘o
term still can be taken as a good approximation, provided o ) ) )
that an appropriate gauge is chosen so tNat SA, The DKE limit of the gauge invariant GKE is the same as
<V|6A|. In other words, in neglecting they- 5A, term,  Ed. (46). o o
one has to add a constraM- 5A, <V 5A, on the choice of The small-banana-width limit of the gauge invariant GKE
gauge. Note that the gauge chosen in &) does not sat- S
isfy the conditionVy- 6A, <V|6A.
Strictly, Eq.(78) (with the superscripR ignored is cor-

Ji(k; p)
— k. pl2 M 6B,

dtg
oM’

f=1fo(M,U,9)+ 8f + G} ayfo+ GLayfo—GLa,fo,

rect only for the Coulomb gaug¥,- 5A(r,t)=0. In practice, (829
Eq. (78) (with the superscripR ignored may be taken as a d L
fgogd approximation, when the following condition is satis- a‘”: —(dyfodit awfoag)(HfﬂL HT) (82b)
ied:

V. SA(r,1)<|V X SA(r ). 80  Wwith (GY',G7,GY) given by Eq.(65¢ and Egs.(72) and

73) and HE¥,HY) given by Eqs(75c¢,.

Equation(80) may be referred to as an approximated Cou—( 9 and {1, Hy) given by Eqs(75¢.0
lomb gauge. WhenV - 8A(r,t)~|V X 5A(r,t)|, Eq. (79
(with the superscriptR ignored is still correct for some
particular problems. As we have pointed out in the beginning We have systematically identified the canonical gyro-
of this section, Eq(78) (with the superscripR ignored is  center variables by using the canonical Hamiltonian Lie-
not gauge invariant just because the gyrophase-dependemansform perturbation method. With the canonical gyro-
part of the perturbed distribution function is not gauge in-center variables, we have established a new representation of
variant. In other words, even V- 6A(r,t)#0, Eq. (78) GKE in terms of the magnetic momeld, the total energy,
(with the superscriptR ignored still correctly gives the and the canonical toroidal momentuP The new represen-
gyrophase-independent part of the perturbed distributioation is invariant with respect to the gauge transformation of
function, and consequently it still correctly gives the per-perturbation fields. In the new representation of GKE, the
turbed mass density, the perturbed charge density, and ttedfects of toroidal symmetry breaking are explicitly revealed.
perturbed parallel current density. In a word, it is alwaysEvery term involved in the GKE presented in the new rep-
correct for shear Alfven wave problems. resentation has its own unambiguous physical interpretation.

We point out that it is easy to recover the gauge invari-Transformed back to the guiding-center coordinates, the
ance in the previous modern GKE'’s by modifying the solu-adiabatic part of the perturbed distribution function is com-
tion of S; (the gauge function for the Hamiltonian Lie trans- pletely determined by the perturbations dfl (U,P). The
form) in the way similar to ours. For classical GKE’s, noting nonadiabatic part of the distribution functioff is com-

VIIl. SUMMARY AND DISCUSSIONS
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pletely determined by the time rates of changebondP  previous GKE’s[1-10] have to be used with the Coulomb
due to the time dependence and toroidal angle dependengauge chosefinote that it has not been well recognized so
introduced by the perturbation of fields. It is clearly and rig-far; among Refs[1-10], only Ref.[2] pointed out that the
orously shown that the free energy associated withCoulomb gauge should be chosen in applying the GKE pre-
dpfo(M,U,P) does not have any nonadiabatic linear driving sented theneand still insists to use the previous GKE'’s, first,
to any axisymmetric modes, which is an important issue irone has to carefully choose the Coulomb gauye 4A
axisymmetric tokamak plasma physics. =0) or at least an approximate Coulomb gaugé- §A
There are two papers devoted to represent the[@BJor < |V X §A|) and second, one has to pick back Vg 6A
DKE[11] in a similar way. In Ref[10], the eikonal ansatz term in the way discussed in the main text of this paper or
was used, so that it cannot be used for electromagnetimake sure that the chosen gauge satisfig A,
modes with arbitrary mode numbers. Moreover, it is not<V|5A. But in general, it may be inconvenient to use the
clear in Ref[10] what kind of roles the perturbed canonical approximate Coulomb gauge satisfyingy- A, <V|5A.
toroidal momentum plays in the gyrokinetic theory, and theClearly, for this case, the gauge invariant representation of
physical interpretation of the adiabatic part of perturbed dis-GKE shall provide considerable convenience.
tribution function defined in Ref.10] is not as simple and For readers who may wish to reexamine those works
clear as in the new representation developed in this paper. Isased on the previous gauge variant GKE'’s, we propose the
addition, the GKE in Ref[10] is correct only for a gauge following criteria.
chosen so that 4- SA, =0 andV - SA=0, or approximately (1) SA=0 (electrostatic modes
correct when an appropriate gauge is chosen so ‘hat (2) V-6A=0 or V- SA<|VXSA|, andVy-5A, =0 or
. 5AL<VH5AH andV- 5A<|V>< 5A|. In Ref.[11], the FLR Vq- 6A, <V||5A” .
effects were dropped in obtaining the DKE. Therefore, the (3) V4 -6A, =0 or V4 SA <V|6A;, and V-5A
previous theorie$10,11 shall be regarded as limiting cases ~|V x §A|, but the given physical problem does not involve
of the new representation of GKE. And indeed, we havethe odd moments of, (for example, the perturbed perpen-
verified that in the corresponding limits, the new representadicular current density

tion of the GKE recovers the previous resuli®,11]. We (4) w, d, is used.
have also provided the small-banana-width version of the (5) w, =g, is used, butw, *d, is equivalent tow, =, .
new representation of GKE. If all of (1)—(3) are not satisfied of4) and (5) are not

The Vy4- 6A, term neglected in previous theorigb-10]  satisfied, then the work based on the previous gauge variant
has been systematically retained in this representation @fKE’s may need careful reconsideration. Of course, we ex-
GKE. It has been shown that retaining tkig- 5A, term is  pect that most of those works based on the previous gauge
important to make this representation of GKE invariant withvariant GKE’s satisfy one ofl)—(3) and one of4) and(5),
respect to the gauge transformation of the perturbation fieldsind consequently do not need any reconsideration from our
in contrast to the previous theori¢s—10, whose gauge viewpoint.
variance has not been well recognized and discussed so far.

And we have shown how to pick back thg- §A, term in

the previous theoriefl,8]. We also note that th¥y- 6A | ACKNOWLEDGMENTS

term can be dropped out of the GKE with an appropriate The author is indebted to Dr. H. L. Berk and Dr. H. V.
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As we have shown, even for ideal MHD shear Alfven author investigate the issue of gauge invariance and directly
wave perturbations, gauge invariance can provide considexerify the gauge invariance of the final gyrokinetic equation.
able convenience. For high bdtatio of plasma pressure to The author would like to thank Dr. C. Z. Cheng for stimu-
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