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Canonical Hamiltonian gyrocenter variables and gauge invariant representation
of the gyrokinetic equation
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By using the extended phase space Hamiltonian Lie-transform perturbation method, Hamiltonian canonical
variables have been found to describe the motion of gyrocenters. A representation of the gyrokinetic equation
has been established in terms of the magnetic momentM, the total energyU, and the canonical toroidal
momentumP of the particle. This representation of the gyrokinetic equation is invariant with respect to the
gauge transformation of perturbation fields. It explicitly reveals the effects of toroidal symmetry breaking, and
it indicates the role that the perturbed canonical toroidal momentum plays in the gyrokinetic theory. In
particular, it is found that the free energy associated with]Pf 0(M ,U,P) @here f 0(M ,U,P) is the equilibrium
distribution function# does not have any nonadiabatic linear driving to the axisymmetric modes.
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I. INTRODUCTION

One of the most challenging problems in tokamak co
trolled nuclear fusion research is to understand the ano
lous transport of plasmas induced by microinstabilities
kinetic-magnetohydrodynamic~MHD! modes. To systemati
cally investigate this problem, the gyrokinetic equati
~GKE! @1–14# shall be used to describe the kinetic respon
of plasmas to the modes. Many papers have been publi
to discuss the derivation of the GKE@1–9#. Among these
papers, the classical gyrokinetic theory@1–3# uses recursive
method and involves explicitly gyroaveraging the Vlas
equation; the modern gyrokinetic theory@4–9# uses the
Hamiltonian Lie-transform perturbation method@15–19#.
GKE’s in all of these papers are represented in terms
noncanonical variables.

When linearizing the GKE, one considers a small dev
tion of the system from the toroidal equilibrium. For an ax
symmetric torus in equilibrium, it is well known that in ad
dition to the magnetic momentM, there are two other
invariants of motion: the total energyU and the canonica
toroidal momentumP, which are associated with the temp
ral symmetry and the toroidal symmetry, respectively. C
sequently, the equilibrium distribution function can be rep
sented as a function of these three invariants of mot
f 0(M ,U,P), when the effects of finite banana width~FBW!
are retained@20#. Therefore, in order to exploit this propert
of the equilibrium distribution function as much as possib
one is led to the consideration of canonical variables in f
mulating the GKE.

To investigate the effects of FBW on the kinetic-MH
instabilities, Porcelli, Stankiewicz, Kerner, and Berk~PSKB!
have discussed the formulation of the drift kinetic equat
~DKE! using (M ,U,P) in dropping the effects of finite Lar
mor radius~FLR! @11#. PSKB’s DKE has revealed the effec
of toroidal symmetry breaking introduced by the perturb
tions; it indicates that the free energy associated w
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]Pf 0(M ,U,P) does not have any nonadiabatic linear drivi
to the axisymmetric modes. This is a very important issue
plasma physics.

For example, the (m,n)5(1,0) (m andn are poloidal and
toroidal mode numbers, respectively! and (m,n)5(2,0) glo-
bal shear Alfven eigenmodes discussed in Ref.@21# are
clearly toroidal axisymmetric modes. Therefore, the exc
tion of these modes by energetic ions should be caref
reexamined. Another example is related to the suppressio
turbulent transport by the sheared flows; it has been rece
recognized that the axisymmetric modes are very impor
in evaluating the anomalous transport@12#. In understanding
the behavior of the axisymmetric modes, it is crucially im
portant that there is no nonadiabatic linear driving to t
modes withn50. We observed that this important stateme
was reached in Ref.@12# based on the classical GKE@3#
formulated with the eikonal ansatz. Clearly, the conventio
eikonal ansatz@1–3# breaks down atn50. Essentially, a
modified eikonal ansatz was used in Ref.@12# by assuming
that the poloidal wavelength is much longer than the rad
wavelength. However, it is the poloidal angle dependence
the perturbed fields that appears to linearly drive the axisy
metric modes in the classical gyrokinetic theory@1–3#; note
that in the literature the diamagnetic drift frequencyv* used
in GKE is proportional toku , the poloidal component of the
wave vector@13#.

To resolve the issues raised above, PSKB’s DKE is
adequate since it does not include the effects of FLR.
observed that even forn50,1, the perpendicular wavelengt
may still be comparable to the ion Larmor radius. It is u
clear whether the effects of FLR shall change the import
statement drawn from PSKB’s DKE. Therefore, we have
write the GKE in the form similar to PSKB’s DKE and mak
the GKE valid for arbitraryn. This has been partially solve
in Refs.@10,22#.

In Ref. @10#, Gorelenkov, Cheng, and Fu~GCF! put the
classical GKE @1# in the form similar to PSKB’s DKE.
GCF’s GKE is written in eikonal form@10# and is based on
the classical gyrokinetic theory@1#; it breaks down whenn
50,1. Therefore, GCF’s GKE has not answered the ques
©2001 The American Physical Society04-1
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SHAOJIE WANG PHYSICAL REVIEW E 64 056404
we have. In Ref.@22#, using axisymmetric cylinder geometr
and assumingf 05 f 0(U,P), Berk and Pfirsch have clearl
shown that the free energy associated with]Pf 0(U,P) does
not have any linear driving to the axisymmetric modes, ev
with effects of FLR included. However, the general equil
rium distribution function in axisymmetric tokamaks shou
be f 0(M ,U,P). Therefore, the problem that we have is s
there.

Another important advantage of PSKB’s DKE is that it
invariant with respect to the gauge transformation of per
bation fields, although this was not explicitly indicated
their paper. To our knowledge, all of GKE’s for electroma
netic perturbations do not have this advantage, altho
some authors claimed or implied that their GKE had t
advantage, and this shall be made clear in the main text

Since the modern gyrokinetic theory@4–9# is valid for
modes with arbitraryn, we shall establish a GKE that has th
advantage of the modern GKE and the advantages
PSKB’s DKE.

In this paper, beginning with the Hamiltonian canonic
variables@23,24# ~in contrast to the previous modern gyrok
netic theory @4–9#, where noncanonical Hamiltonian Li
transform was used!, we shall use the canonical Hamiltonia
Lie-transform perturbation method to systematically est
lish a representation of GKE in terms of (M ,U,P). The rep-
resentation shall explicitly reveal the effects of toroidal sy
metry breaking and clearly show that there is
nonadiabatic linear driving to arbitrary axisymmetric mod
in contrast to the previous classical@1–3# and modern@4–9#
gyrokinetic theory. And the new representation of GKE
invariant with respect to the gauge transformation of per
bation fields. The canonical Hamiltonian Lie-transform p
turbation method used in this paper may also be of interes
readers working in general physics.

The remaining part of this paper is organized as follow
In Sec. II, we briefly review the theory of canonical Ham
tonian variables and the Lie-transform perturbation meth
In Sec. III, we derive the canonical variables for gyrocent
~here and throughout this paper, following the terminolo
of Brizard @4#, we denote the guiding centers in perturb
field as gyrocenters!. In Sec. IV, we derive the new repre
sentation of GKE. In Sec. V, we present limiting cases a
compare them with existing theory. In Sec. VI, we discu
the invariance with respect to gauge transformation of p
turbation fields. In Sec. VII, we present the final gauge
variant form of GKE. In Sec. VIII, we summarize the ma
results and make some further discussions.

II. REVIEW OF CANONICAL HAMILTONIAN
FORMULATION OF GUIDING-CENTER MOTION AND

LIE-TRANSFORM PERTURBATION METHOD

In this section, we briefly review the well-establishe
theory of canonical Hamiltonian formulation of the guidin
center motion@23,24# and the Lie-transform perturbatio
method@15–19#, based on which our following discussion
shall develop. For the details, we refer the readers to
literature.
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A. Canonical Hamiltonian formulation
of guiding-center motion

To begin our discussion, we write down the general re
resentation of the equilibrium field in tokamaks.

B5“cT3“u1“z3“c ~1a!

5g~c!“z1I ~c!“u1d~c,u!“c, ~1b!

F5F~c,u!, ~2!

whereB is the equilibrium magnetic field andF is the elec-
trostatic potential. (c,u,z) are the magnetic flux coordinate
c is the poloidal magnetic flux,u is the poloidal angle, andz
is the toroidal angle.cT5cT(c) is the toroidal magnetic
flux, which satisfiesdcT /dc5q(c), with q(c) being the
well-known MHD safety factor.

Guiding-center canonical variables are (M ,P,Pu ;j,z,u);
M is the usual magnetic moment andj is the gyrophase
angle. The canonical toroidal momentumP and the canonica
poloidal momentumPu are defined by

P5gr i2c, ~3a!

Pu5Ir i1cT , ~3b!

wherer i5v i /B, v i is the parallel velocity. Note that with
Eq. ~3! we have

c5c~P,Pu!, ~4a!

r i5r i~P,Pu!. ~4b!

Guiding-center Hamiltonian is written as

H0~M ,P,Pu ,u!5MB1
1

2
r i

2B21F, ~5!

where, and throughout this paper, we have setes5ms51 (es
andms are electric charge and mass of the particle, resp
tively! to make the formulas concise. The physical formu
can be obtained by restoring the factors ofes andms .

In order to facilitate the following discussions on the pe
turbed time-dependent system, we introduce the exten
phase space@16# (M ,P,Pu ,2U;j,z,u,t) and the indepen-
dent parametert. This is a well-known tactic in dealing with
the time-dependent system@16,7#. The fundamental one
form in this extended phase space can be written as

G05G0i dzi ~6a!

5M dj1P dz1Pu du2U dt2h0 dt, ~6b!

h05H02U, ~6c!

where we have used the notation (z1,z2,z3,z4;
z5,z6,z7,z8;z9)[(M ,P,Pu ,2U;j,z,u,t;t). The equations
of motion are readily found

d

dt
j5

]

]M
h05

]

]M
H0 , ~7a!
4-2
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CANONICAL HAMILTONIAN GYROCENTER VARIABLE S . . . PHYSICAL REVIEW E 64 056404
d

dt
M52

]

]j
h052

]

]j
H050, ~7b!

d

dt
z5

]

]P
h05

]

]P
H0 , ~7c!

d

dt
P52

]

]z
h052

]

]z
H050, ~7d!

d

dt
u5

]

]Pu
h05

]

]Pu
H0 , ~7e!

d

dt
Pu52

]

]u
h052

]

]u
H0 , ~7f!

d

dt
t5

]

]~2U !
h051, ~7g!

d

dt
~2U !52

]

]t
h052

]

]t
H050. ~7h!

Note that (2U,t) are a pair of conjugate variable
Clearly, it is convenient to sett5t and interpretU as the
total energy of the particle@16#. Note that the three invariant
of motion are associated with three symmetries in the s
tem. Conservation ofM results from the gyrosymmetry,j
independence ofH0; conservation ofP results from the tor-
oidal symmetry,z independence ofH0; conservation ofU
results from the temporal symmetry,t independence ofH0.

To close this section, we remind the readers that this
mulation automatically guarantees the Hamiltonian char
ters of the guiding-center motion.

B. Lie-transform Hamiltonian perturbation method

The Lie-transform perturbation method is discussed in
tail in Refs.@15–19#. Here we simply write down the formu
las that we are going to use in this paper. Assuming that
perturbed one-form can be expanded in powers of«d—a
small parameter, up toO(«d) we can transform the one-form
according to the rule

Ḡ05G01dS0 , ~8a!

Ḡ15G12L1G01dS1 , ~8b!

Ḡ5Ḡ01Ḡ11O~«d
2!, ~8c!

G5G01G11O~«d
2!, ~8d!

whereL1G0 is a one-form that is given by

~L1G0! i5G1
j S ]G0i

]zj
2

]G0 j

]zi D , ~9!

with G1
j known as the Lie-transform generating vector. T

phase space variables are transformed by
05640
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z̄i5zi1G1
i 1O~«d

2!. ~10!

And a scalar is transformed in the way

f̄ 5 f 2G1
i ] f /]zi1O~«d

2!. ~11!

To close this section, we emphasized that the Lie tra
form provides the relationships of functions, therefore,
practical calculation, both sides of each formula presen
here should be evaluated with the same arguments@19#.

III. CANONICAL VARIABLES
FOR GYROCENTER MOTION

In this section, we shall find the canonical transform fro
the guiding-center coordinates to the gyrocenter coordina

Introduce the perturbation of the vector potential and
scalar potential written in the general form

dA5dAc~r ,t !“c1dAu~r ,t !“u1dAz~r ,t !“z,
~12a!

dF5dF~r ,t !, ~12b!

wherer5R1r is the particle position, withR the guiding-
center position andr the vector Larmor radius.

At this point, we clarify the orderings used in this pape
There are two independent small parameters: the ratio of
Larmor radius to the scale length of the equilibrium magne
field, «B , and the ratio of perturbed field to the equilibriu
field, «d .

The perturbed one-form is written as

G5G01G1 , ~13!

with G0 given in the previous section. Here and througho
this paper, subscript 0 denotesO(«d

0) and subscript 1 de-
notesO(«d). We are at the position to emphasize that@17#
G0 is kept up toO(«B).

G1 is given by

G15dA•d~R1r!2dF dt

5~dAc1dA•]cr!dc1~dAu1dA•]ur!du

1~dAz1dA•]zr!dz1~dA•]Mr!dM

1~dA•]jr!dj2dF dt ~14a!

[dAc* dc1dAu* du1dAz* dz1~dA•]Mr!dM

1~dA•]jr!dj2dF dt. ~14b!

Note that we have retained in Eq.~14b! the D term defined
by

D[~dAc* dc1dAu* du1dAz* dz!

2~dAc dc1dAu du1dAz dz! ~15a!

[dA•]cr dc1dA•]ur du1dA•]zr dz, ~15b!

Equation~14b! can be put in the form
4-3
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G15dAc* S ]c

]Pu
dPu1

]c

]P
dPD1dAu* du1dAz* dz

1~dA•]Mr!dM1~dA•]jr!dj2dF dt. ~16!

Now we can carry out the Lie transform up to the fir
order in«d . To do this, we choose

dS050, ~17!

and consequently

Ḡ05G01O~«B
2 !. ~18!

In Eq. ~18!, we have explicitly indicated thatḠ0 andG0 are
kept up toO(«B). Since we do not want to transformt and
the system is independent oft, we set

G1
t 505]S/]U, ~19a!

G1
t505]S/]t. ~19b!

We shall make a symplectic transform to transfer all of
perturbations to Hamiltonian. To do this, we have the gen
ating vector

G1
j52S dA•

]r

]M
1

]S1

]M D , ~20a!

G1
z52S dAc* 1

]S1

]c D ]c

]P
, ~20b!

G1
u52S dAc* 1

]S1

]c D ]c

]Pu
, ~20c!

G1
M5dA•

]r

]j
1

]S1

]j
, ~20d!

G1
P5dAz* 1

]S1

]z
, ~20e!

G1
Pu5dAu* 1

]S1

]u
, ~20f!

G1
U5dF2

]S1

]t
. ~20g!

And the transformed first order~in «d) one-form is given by

Ḡ152H̄1 dt, ~21a!

H̄15dw2~] t1ċ0]c1 u̇0]u1 ż0]z1 j̇0]j!S1 , ~21b!

dw[dF2ċ0dAc* 2 u̇0dAu* 2 ż0dAz* 2 j̇0dA•]jr,
~21c!

where the overdot meansd/dt, and

ċ052]H0 /]u~]c/]Pu!, ~22a!
05640
e
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u̇05]H0 /]Pu , ~22b!

ż05]H0 /]P, ~22c!

j̇05]H0 /]M . ~22d!

Note that every term in Eq.~22! is independent of (j,z,t).
To make the transformed one-form independent of the
rophase, we choose

H̄15^dw&[^dF&2~ ċ0^dAc* &1 u̇0^dAu* &1 ż0^dAz* &

1 j̇0^dA•]jr&!, ~23!

where^•••& denotes gyroaveraging.
It is not hard to recognize that

j̇0^dA•]jr&;O~«B
0 !. ~24!

To understand Eq.~24!, it is helpful to have a look at Eq
~38c!. Now we can examine the contribution of theD term to
H̄1. Using u̇0 / j̇0;O(«B), (dA•]ur)/(dA•]jr);O(«B)
and similar equations, one can find that

^ċ0dA•]cr1 u̇0dA•]ur1 ż0dA•]zr&

j̇0^dA•]jr&
;O~«B

2 !. ~25!

Combining Eqs.~24! and ~25!, we conclude that the contri
bution of theD term toH̄1 andḠ1 is ;O(«B

2). However,Ḡ0

has only been kept toO(«B) @see, Eq.~18!#. Clearly theD
term cannot be self-consistently included, it has to
dropped. We shall set

~dAc* ,dAu* ,dAz* !5~dAc ,dAu ,dAz!. ~26!

The final gyroaveraged first order~in «d) Hamiltonian is
written as

H̄15^dw&[^dF&2~ ċ0^dAc&1 u̇0^dAu&1 ż0^dAz&

1 j̇0^dA•]jr&!. ~27!

Note that the discussion on the reason why theD term
should be dropped has been similarly made in Ref.@11# in
deriving the final first order Lagrangian for DKE. The equ
tions of motion are readily found,

dM̄/dt50, ~28a!

dŪ/dt5] tH̄1 , ~28b!

dP̄/dt52]z̄H̄1 . ~28c!

Accordingly, we have the governing equation forS1, the
gauge function of the Hamiltonian Lie transform,

dw̃5~] t1ċ0]c1 u̇0]u1 ż0]z1 j̇0]j!S1 , ~29!

wheredw̃[dw2^dw&.
4-4
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Following the previous gyrokinetic theory@4,7#, we tempo-
rarily approximate the solution to Eq.~29! as

j̇0]jS1'dw̃, ~30!

which indicates that

] tS1;ċ0]cS1;u̇0]uS1;ż0]zS1! j̇0]jS1;dF̃;ċ0dÃc

;u̇0dÃu;ż0dÃz;j̇0dA•]jr̃. ~31!

The essence of this approximation will be made clear in S
VII.

With the help of Eq.~26! and the approximate solution t
Eq. ~29! @Eqs.~30–31!#, we obtained

G1
M'^dA•]jr&1~dF̃2ċ0dÃc2 u̇0dÃu2 ż0dÃz!/B,

~32a!

G1
U'dF, ~32b!

G1
P'dAz . ~32c!

The other components of generating vector and equa
of motion will not be used in the following discussion
therefore we do not present them here.

We have retained in Eqs.~27! and~32! the drift terms that
were previously neglected@1–10#. To make it clear, we write

H̄15^dF&2~ ċ0^dAc&1 u̇0^dAu&1 ż0^dAz&1 j̇0^dA•]jr&!

5^dF2VidAi2 j̇0dA•]jr&2Vd•^dA'&, ~33!

with dA5dAib1dA' ,dAi5b•dA; Vib1Vd5dR/dt, Vi
5b•dR/dt; b5B/B. Note that althoughVd;O(«B), we
have Vd•dA';O(«B

0), sincedA';O(«B
21). Therefore, to

be consistent with the ordering ofḠ0 in Eq. ~18!, the
Vd•dA' term should be retained inH̄1.

To close this section, we point out that, theD term can be
systematically dropped without changing the Hamilton
character of the dynamics, while theVd•dA' term cannot
be. More discussions on this term will be made in the f
lowing.

IV. NEW REPRESENTATION OF GKE

Before deriving the GKE, we point out that among t
eight variables used in the extended phase space, ther
only six independent physical variables as was discusse
Ref. @16#. To derive the GKE, instead of using the coord
nates (M̄ ,P̄u,P̄,j̄,ū,z̄;t) we shall use the coordinate
(M̄ ,Ū,P̄,j̄,ū,z̄;t). The Vlasov equation in these coordinat
can be written as

] f̄

]t
1

dM̄

dt

] f̄

]M̄
1

dŪ

dt

] f̄

]Ū
1

dP̄

dt

] f̄

] P̄
1

dj̄

dt

] f̄

]j̄
1

dū

dt

] f̄

]ū

1
dz̄

dt

] f̄

]z̄
50. ~34!
05640
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It is well known that the distribution function in terms o
gyrocenter coordinates,f̄ , is independent of the gyrophas
anglej̄ @7,17#. Therefore we have

] f̄

]t
1

dŪ

dt

] f̄

]Ū
1

dP̄

dt

] f̄

] P̄
1

dū

dt

] f̄

]ū
1

dz̄

dt

] f̄

]z̄
50, ~35!

where Eq.~28a! was used. Equations~28b,c! indicate that
dŪ/dt501O(«d) and dP̄501O(«d). Therefore, expand-
ing in terms of«d , we have

f̄ 5 f̄ 0~M̄ ,Ū,P̄!1d f̄ ~M̄ ,Ū,P̄,ū,z̄,t !, ~36a!

S d

dtD
0

d f̄ 52~] Ū f̄ 0] t2] P̄ f̄ 0]z̄!H̄1 , ~36b!

S d

dtD
0

5
]

]t
1S dū

dt
D

0

]

]ū
1S dz̄

dt
D

0

]

]z̄
. ~36c!

Transforming back to guiding-center coordinates,
have up toO(«d)

f 5 f 0~M ,U,P!1G1
M ] f 0

]M
1G1

U] f 0

]U
1G1

P] f 0

]P
1d f ,

~37a!

d

dt
d f 52~]Uf 0] t2]Pf 0]z!~^dF&2ċ0^dAc&2 u̇0^dAu&

2 ż0^dAz&2 j̇0^dA•]jr&!, ~37b!

whered/dt is the time rate of change evaluated along t
unperturbed guiding-center orbit.

Note that Eq.~37! can be used for electromagnetic mod
with arbitrary toroidal mode numbern. It clearly reveals the
effects of temporal and toroidal symmetry breaking. Eve
term in these equations has its own unambiguous phys
interpretation. The adiabatic part of the perturbed distrib
tion function in Eq.~37a! is completely determined by th
perturbations of the magnetic moment, the total energy,
the canonical toroidal momentum; the coefficients
] f 0 /]M , ] f 0 /]U, and ] f 0 /]P are the perturbations ofM,
U, andP, respectively. The nonadiabatic part of the distrib
tion function,d f , is purely due to the nonconservation of th
total energy and the nonconservation of the canonical to
dal momentum introduced by the perturbation of fields. It
clearly shown that, within the frame of linear gyrokinet
theory, the free energy associated with]Pf 0 (M ,U,P) does
not nonadiabatically drive any axisymmetric modes.

V. LIMITING CASES

In order to compare the new representation of GKE w
the existing theory, we present three limiting cases in t
section. For readers who are not interested in the detail
comparison, this section may be skipped.
4-5
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A. Eikonal form

To explicitly evaluate the gyroaveraging used in the p
vious section, we introduce the eikonal ansatz following
conventional way@1,14#, (dF,dA);exp(ik'•r), with k'

being the perpendicular component of the wave vector. T
it is merely a simple mathematical exercise to verify that

^dF&5J0~k'r!dFc , ~38a!

^dAz&5J0~k'r!dAzc , ~38b!

^dA•]jr&52
J1~k'r!

k'r/2
MdBc , ~38c!

whereJ0 ,J1 are the zeroth order and the first order Bes
functions, respectively;dB5b•“3dA; the subscript c
means the corresponding quantity is evaluated at
guiding-center position.

Now we can write the new representation of GKE in t
eikonal form as

f 5 f 0~M ,U,P!1d f 1dF
] f 0

]U
1dAz

] f 0

]P

1
1

BF2
J1~k'r!

k'r/2
MdBc1~dF2J0dFc!

2
dR

dt
•~dA2J0dAc!G ] f 0

]M
, ~39a!

d

dt
d f 52~]Uf 0] t2]Pf 0]z!FJ0S dFc2

dR

dt
•dAcD

1
J1~k'r!

k'r/2
MdBcG , ~39b!

with d/dt evaluated along the unperturbed guiding-center
bit. In obtaining Eq.~39!, we have used Eq.~32!.

To compare Eq.~39! with Ref. @10#, we need some
lengthy mathematical manipulations, which are briefly su
marized as follows. First, we write down the relevant eq
tions in Ref.@10# as

f 5 f 01d f̂ 1F] f 0

]U
1

] f 0

]M

1

BS 11
i

v
v ib•“ D1

ig

Bv

] f 0

]Pz
b•“G

3~dF2J0dFc!2
] f 0

]M

1

B

J1~k'r!

k'r/2
MdBc

2
“Pz3b

B
•dA

] f 0

]Pz
2

i

Bv

] f 0

]Pz
“c3b•“J0dFc , ~40a!

d

dt
d f̂ 5

] f 0

]U S 12
v*
v D X̂, ~40b!

v* 52 i
] f 0 /]Pz

] f 0 /]U
]z , ~40c!
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X̂5S dR

dt
2v ibD •“J0dFc1 iv

J1~k'r!

k'r/2
MdBc . ~40d!

Note that a few of the misprints in Ref.@10# @Eqs.~12!–
~14! there# have been corrected. Note also thatPz52P,
which is due to the different definitions used in Ref.@10# and
in this paper. UsingB5g“z1“z3“c, one can show tha
the three terms involving] f 0 /]Pz in Eq. ~40a! can be put
into the following form:

] f 0

]Pz
S 2

“Pz3b

B
•dA1

ig

Bv
b•“dF2

i

v
]zJ0dFcD .

~41!

Using] t52 iv and2b•“dF1 ivdAi50 in accordance
with Ref. @10# to restore] t anddAi , redefining the nonadia
batic part of the perturbed distribution function as

d f 5d f̂ 2
] f 0

]U S 12
v*
v D J0dFc , ~42!

and finally usingP instead ofPz @changing the signs ofv*
and the last two terms in the bracket in Eq.~41!#, we ob-
tained

f 5 f 01d f 1
] f 0

]U
dF1

] f 0

]P S g

B
dAi1

dA3b

B
•“PD

1
] f 0

]M

1

BF2
J1~k'r!

k'r/2
MdBc1~dF2J0dFc!

2v i~dAi2dAic!G , ~43a!

d

dt
d f 52~]Uf 0] t2]Pf 0]z!FJ0~dFc2v idAi!

1
J1~k'r!

k'r/2
MdBcG . ~43b!

Using“P52“c1O(«B), it is easy to show that

g

B
dAi1

dA3b

B
•“P5dAz . ~44!

Substituting Eq.~44! into Eq. ~43a!, we obtained the re-
sulting equations, which agree well with Eq.~39!. The only
difference is that we have kept theVd•dA'c and Vd•dA'

terms in Eq.~39!. As we have pointed out, these two term
are not included in Ref.@1#, which is the starting point of
Ref. @10#. More discussions on this point will be given in th
next section.

B. DKE form

Dropping the effects of FLR, we can obtain the DK
This can be done by setting

J0~k'r!51, ~45a!
4-6
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J1~k'r!

k'r/2
51, ~45b!

dF5dFc , ~45c!

dA5dAc . ~45d!

The resulting DKE reads

f 5 f 01d f 1
] f 0

]U
dF2

] f 0

]M
M

dB

B
1

] f 0

]P
dAz , ~46a!

d

dt
d f 52~]Uf 0] t2]Pf 0]z!S dF2

dR

dt
•dA1MdBD ,

~46b!

which agrees with Ref.@11#. This representation of GKE
exactly recovers, in dropping the effects of FLR, the DK
@11# including theVd•dA' term.

C. Small-banana-width limit

Finally, it may be useful to present the small-banan
width limit of the new representation of GKE. Dropping th
effects of FBW in Eq.~37!, we may make the replacemen

@]M ,]U ,]P# f 0~M ,U,P!→@]M ,]U ,2]c# f 0~M ,U,c!.
~47!

Note that a similar small-banana-width approximation h
been made and discussed in Ref.@11#. Then Eq.~37! reduces
to

f 5 f 0~M ,U,c!1d f 1G1
M]M f 01G1

U]Uf 02G1
P]c f 0 ,

~48a!

d

dt
d f 52~]Uf 0] t1]c f 0]z!^dw&. ~48b!

In most practical cases, when the effects of FBW
dropped, the Maxwellian distributionf M(U,c) may be used
as an approximate equilibrium thermal plasma distribut
and the slowing-down distributionf S(M ,U,c) may be used
as an approximate equilibrium fast ion distribution. Sin
]Uf M] t^dw& or ]Uf S] t^dw& is merely a damping term, as i
well known, we may conclude that there is no nonadiaba
linear driving to any axisymmetric modes, with the Maxwe
ian distribution or the slowing-down distribution used as t
equilibrium distribution.

To compare Eq.~48! with the existing literatures, we as
sume

^dw&;exp~2 ivt !. ~49!

Then Eq.~48b! can be written as

d

dt
d f 5 i ~v2v* !]Uf 0^dw&, ~50a!
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v* 52 i
]c f 0

]Uf 0
]z . ~50b!

We are at the position to make some remarks on thev*
term in the GKE. Conventionally, when using the local Ma
wellian distribution f M(U,c) as the equilibrium therma
plasmas distribution or using the slowing-down distributi
f S(M ,U,c) as the equilibrium fast ions distribution,v*
}]u in the GKE@13,25#. However, recently, when retainin
the effects of FBW, it is shown thatv* }]z in GKE @10# or
in DKE @11#. To clarify this important controversial issue
first we go back to Ref.@10#. Note that the classical GKE
Eq. ~7! in Ref. @10#, agrees with the modern GKE@Eq. ~35!
in Ref. @7##. When substitutingf M(U,c) or f S(M ,U,c) as
the equilibrium distribution in the GKE@Eq. ~7! in Ref. @10#
or Eq.~35! in Ref. @7##, one getsv* }]u , as in Refs.@13,25#.
When substitutingf 0(M ,U,P) as the equilibrium distribu-
tion in the GKE@Eq. ~7! in Ref. @10##, one getsv* }]z , as
was shown in Ref.@10#. The point is that f M(U,c) or
f S(M ,U,c) is not a true equilibrium distribution in an axi
symmetric torus, since it is not a constant of motion. The
fore, one should be careful when usingf M(U,c) or
f S(M ,U,c) as the approximate equilibrium distribution. It
well-known that it is important to keep the Hamiltonian cha
acter of the motion in deriving the GKE. And the Hami
tonian character is clearly kept in deriving Eq.~37!. There-
fore, the v term in the GKE is associated with th
nonconservation of the gyrocenter energy and thev* term in
the GKE is responsible for the nonconservation of the
nonical toroidal momentum of the gyrocenter. Clearlyv*
}]z is related to the Hamiltonian character of the motion
should not be violated. In substitutingf M(U,c) or
f S(M ,U,c) as the equilibrium distribution in the GKE@Eq.
~7! in Ref. @10# or Eq. ~35! in Ref. @7##, the Hamiltonian
character of the motion is lost, since neitherf M(U,c) nor
f S(M ,U,c) satisfies the lowest order GKE for an axisym
metric torus. In obtaining Eq.~50! through making the re-
placement, Eq.~47! in Eq. ~37!, the Hamiltonian character o
the motion is safely kept, since thev* }]z term in Eq.~50!
is indeed related to the nonconservation of the canonica
roidal momentum of the gyrocenter introduced by the pert
bation. It was pointed out by Littlejohn@17# that the GKE
should be understood as a representation; similarly, we p
out here that Eqs.~47! and ~50! should be understood as
representation rather than an approximation.

To close this section, we point out that the incorrectv*
}]u in the literature@13,25# is not due to an error in the
original GKE’s @1–9#; it is due to the carelessness in usin
f M(U,c) as the approximate equilibrium distribution, as h
been discussed in the above paragraph. However, the GK
in Refs.@1–4,6–9# do not include theVd•^dA'& term in the
first order~in «d) gyroaveraged HamiltonianH̄1. The GKE
in Ref. @5# has included the drift term induced by the equ
librium radial electric field, but it has not included the dri
term induced by the inhomogeneity of the equilibrium ma
netic field. And all of these GKE’s are not invariant wit
4-7
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respect to the gauge transformation of the perturbation fi
in toroidal geometry, as will be discussed in detail in the n
section.

VI. INVARIANCE WITH RESPECT TO GAUGE
TRANSFORMATION OF PERTURBATION FIELDS

A. General remarks on gauge invariance

Now, we shall discuss the invariance with respect
gauge transformation of the perturbation fields.

It is well known that the gauge transformation of the ve
tor potential and the scalar potential of the electromagn
fields does not change electromagnetic fields themselves
does not change the Hamiltonian dynamics. This is v
clear in Hamiltonian formalism, since the gauge transform
tion only adds a total differential to the fundamental on
form and adding an arbitrary total differential to the fund
mental one-form does not change the Hamiltonian dynam
However, at first sight, it seems that there might be so
problems in making our formalism gauge invariant. Sinc
general gauge transformation introduces a time-depen
component to the scalar potential, the unperturbed Ha
tonianH0 becomes time dependent; it seems that we lose
three important constants of motion. Of course, this is not
case; one can verify that the three constants of motion
still there. However, this clearly makes the unperturbed s
tem formally time dependent and unnecessarily makes
problem complicated. This unnecessary complication can
avoided by the following scenario.

Since the system equilibrium state is physically time
dependent, we do not want to introduce any gauge trans
mation to make the unperturbed system mathematically
formally time dependent. We shall choose a specific ga
@23,24# to display the three constants of motion as clearly
in Sec. II A. We only allow gauge transformation of the pe
turbation fields. Given the perturbation fields

dB5“3dA, ~51a!

dE52] tdA2“dF, ~51b!

we make the following gauge transformation:

dA85dA1“dg~r ,t !, ~52a!

dF85dF2] tdg~r ,t !. ~52b!

Note that (dA,dF) have already been written in a gener
form in Eq. ~12!. So ‘‘the GKE for (dA8,dF8)’’ can be
directly written out by replacing (dA,dF) by (dA8,dF8) in
‘‘the GKE for (dA,dF).’’

However, the GKE for (dA8,dF8) may be obtained in a
different way. With the gauge transformation of the pert
bation potentials, the first order fundamental one-form giv
in Eq. ~16! is changed to

G185G11dr•“dg1] tdg~r ,t !dt ~53a!

5G11ddg. ~53b!
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According to Eq.~8b!, the Lie-transformedḠ1 is changed
by the gauge transformation

Ḡ185G12L1G01d~S11dg! ~54a!

[G12L1G01dS18 . ~54b!

Now, one can run the derivations described in Sec.
again. The only difference is thatS1 in Sec. III is symboli-
cally changed toS18 . The final results in Eqs.~27!–~29! and
consequently Eq.~37! do not change, they are still dete
mined by (d A,dF).

So, beginning with (dA8,dF8), one may obtain the fina
GKE that is identical to the GKE for (dA,dF). Therefore,
for one physical problem, we have two formally differe
GKE’s. However, from the above discussions, one can
that both the GKE’s follow the same Hamiltonian formalism
Therefore, the dynamics is the same. We may draw the
lowing conclusion, which shall be referred to as an equi
lence theorem.

If any (dA8,dF8) can be related to (dA,dF) by the
gauge transformation Eq.~52!, then the GKE for (dA8,dF8)
is equivalent to the GKE for (dA,dF).

Now, for a given (dA8,dF8), one may do a gauge trans
formation, Eq.~52!, to reach (dA,dF). Equation~12! guar-
antees that there are no constraints on this gauge transfo
tion, and that through the gauge transformation Eq.~52!, any
(dA8,dF8) can be related to (dA,dF) represented in Eq
~12!. The equivalence theorem guarantees that the G
needed is exactly Eq.~37!.

Therefore, we concluded that our GKE@Eq. ~37!# does
not depend on a specific gauge of the perturbation fields;
invariant with respect to the gauge transformation of pert
bation fields.

B. Importance of the Vd"dA� term

Now, we can clarify why it is important to keep th
Vd•dA' term in the GKE.

Simply, whenVd50 or a gauge is chosen so thatdA'

50, theVd•dA' term can be dropped out of the GKE. Ge
erally VdÞ0, so this term cannot be dropped for a gau
dA'Þ0. The mathematical reason is that, althou
Vd•dA' /VidAi;O(«B) ~when udA'u;dAi), Vd•dA'

;O(«B
0) cannot be dropped since we have to keep a

O(«B
0) term in the fundamental one-form, as has been d

cussed in Sec. III. The physical reason is more fundamen
in dropping this term, one breaks the Hamiltonian struct
of the dynamics and consequently loses the property
gauge invariance.

The GKE’s in Refs. @1–4,6–9# do not include the
Vd•^dA'& term in the first order~in «d) gyroaveraged
Hamiltonian,H̄1; the GKE in Ref.@5# has included the drift
term induced by the equilibrium radial electric field, but
has not included the drift term induced by the inhomogene
of the equilibrium magnetic field. And all of these GKE’s a
not invariant with respect to the gauge transformation of
perturbation fields in toroidal geometry.
4-8
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To make this point clearer, we shall discuss two typi
papers in more detail. One is typical of the classical G
@1#, the other is typical of the modern GKE@8#. In both these
papers, theVd•^dA'& has not been retained. In Ref.@1#, it
was explicitly indicated that the derivation does not depe
on any specific gauge@see, notes after Eqs.~41! and ~42! in
Ref. @1##; in Ref. @8#, the authors did not indicate a specifi
gauge. To clearly show that these GKE’s are not gauge
variant, we shall make an example.

It is well known that for ideal MHD shear Alfven wav
perturbations, the perturbation fields can be described by
different gauges,

dB5“3~dA!, dA5dAib, ~55a!

dE52] tdAib2“dF; ~55b!

b•dE50, ~55c!

] tjW'5dE3b ~55d!

with jW' being the usual perpendicular component of the id
MHD fluid displacement; and

dB5“3~jW'3B!, dA5jW'3B, ~56a!

dE52] t~jW'3B!, dF50. ~56b!

In the well-known paper on fishbone modes@26# Chen,
White, and Rosenbluth applied the GKE@1# with the gauge
Eq. ~55a,b! and they obtained the well-known result. How
ever, if one used the gauge Eq.~56! in applying the GKE@1#
to solve the same problem discussed in Ref.@26#, one would
not obtain the correct result. This is undoubtedly due to
fact that the GKE in Ref.@1# is not gauge invariant. It can b
similarly verified that the GKE in Ref.@8# is not gauge in-
variant either.

With the effects of FLR ignored, it is straightforward t
verify that our GKE gives same results with the two differe
gauges given in Eq.~55! and Eq.~56!; the resonance inter
action between the energetic trapped ions and the inte
kink mode is proportional toVd•dE' . In dropping the ef-
fects of FBW and FLR, our results obtained with the tw
different gauges agree with Ref.@26#. As we have shown tha
our GKE agrees with Ref.@1# whendA'50, the procedure
to use Eq.~55! in our GKE is similar to Ref.@26#. It is
similar to running from Eq.~43! back to Eq.~40!, some
mathematical manipulations that have not been displaye
Ref. @26#. Since we have shown that our GKE agrees w
Ref. @11#, the procedure to use Eq.~56! in our GKE, which is
simpler than using Eq.~55!, is similar to Ref.@11#. The only
exception is that the initial conditionF50 used there is
unnecessary in our case.

To close this section, we point out that even for ide
MHD shear Alfven wave perturbations, gauge invariance
provide considerable convenience. From our discuss
above, one can see that using the gauge Eq.~56! is more
convenient than using the gauge Eq.~55!. It is also interest-
ing to note that, for fishbone modes, the two different vie
05640
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points (v* }]u andv* }]z discussed in Sec. V C! give the
same result@26,27#, sincejW';exp(iu2iz).

C. Recovering the Vd"dA� term

It is useful to show how to recover theVd•^dA'& term in
the first order~in «d) gyro-averaged Hamiltonian within th
frame of Refs.@1,8#.

First, let us look at Ref.@8#, which is a typical paper on
the modern gyrokinetic theory.

We shall examine Eqs.~11! and ~16–19! of Ref. @8#. In
their Eq. ~11!, our D term was dropped by neglecting th
inhomogeneity of equilibrium fields. In their Eqs.~16–18!,
our Vd•^dA'& term appeared. Note thatVd comes from the
inhomogeneity of equilibrium fields. In their Eq.~19!, the
Vd•^dA'& term was dropped by neglecting the inhomogen
ity of equilibrium fields. Clearly, the self-consistence of Re
@8# in neglecting both theD term and theVd•^dA'& term
was related to neglecting the inhomogeneity of equilibriu
fields. Note thatVd was still retained in the propagator i
their GKE @see, their Eq.~41!#. As we have shown in Sec
III, it is unnecessary to neglect the inhomogeneity of eq
librium fields. It is due to the fact that the contribution of th
D term to the gyroaveraged Hamiltonian is ofO(«B

2), which
is irrelevant, that theD term can be systematically droppe
Therefore theVd•^dA'& term can be self-consistently re
tained in Eq.~19! in Ref. @8#.

Second, let us look at Ref.@1#, which is a typical paper on
the classical gyrokinetic theory.

We shall examine Eqs.~35–41! of Ref. @1#. It is not hard
to recognize that the neglecting of theVd•^dA'& term in
their Eq.~41! is closely related to the third line of their Eq
~40!. Therefore, we write down this key equation.

^v' exp~ iL !&5~ iv' /k'!J1~k'v' /V!k'3b, ~57!

with L5k'•b3v.
We observed that Eq.~57! implies thatv' has been taken

as a constant. This implies that

^v'&50. ~58!

Note thatv is the particle velocity. It is well known tha
Eq. ~58! is true only to the zeroth order in«B . To the first
order in«B , we have

^v'&5Vd . ~59!

This indicates that, to the first order in«B , we should use

v'5Vd1 ṽ' , ~60a!

^ṽ'&50, ~60b!

uṽ'u'uv'u5v' . ~60c!

Clearly, to first order in«B , Eq. ~57! may be replaced by

^v'exp~ iL !&5~ iv' /k'!J1~k'v' /V!k'3b

1VdJ0~k'v' /V!, ~61!
4-9
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With this replacement, theVd•^dA'& term can be easily
recovered within the frame of Ref.@1#.

To close this section, we point out that without the d
tailed comparison analysis discussed above, it is very eas
miss theVd•^dA'& term in previous GKE’s.

VII. GAUGE INVARIANT FORM OF GKE

To completely resolve the issue of gauge invariance,
have to directly verify that the perturbed distribution fun
tion in terms of the guiding-center coordinatesf is invariant
with respect to the gauge transformation. To determine
perturbed distributionf, the GKE, Eq.~37!, is not complete;
we need to determine (G1

M ,G1
U ,G1

P), the generating vecto
of the Lie transform. At first, we use the approxima
(G1

M ,G1
U ,G1

P) given in Eq.~32!, which is based on Eqs.~30!
and ~31! and equivalent to the previous theory@4,7#. In the
last two sections, we have compared Eqs.~32! and~37! with
previous GKE’s in detail, and we have resolved the o
difference, theVd•dA' term.

According to the general remarks on the gauge invaria
made in the last section, we expected gauge invariance o
new GKE, combination of Eqs.~37! and ~32!. Now, we are
at the position to verify the gauge invariance of the perturb
distribution functionf in terms of guiding-center coordinate
Unfortunately, the results show that the gyrophase-depen
part of f in guiding-center coordinates is not gauge invaria
To resolve this problem, we first go back to reexamine
general remarks on the gauge invariance made in the
section. We understand that it is the formalism of the Ham
tonian Lie-transform that is gauge invariant. Therefore, if
had not introduced any approximations when deriving
GKE by the Hamiltonian Lie transform, we should have o
tained a gauge invariant form of GKE. Guided by the gene
remarks on the gauge invariance, we recognized that
important to have a proper solution toS1 ~known as the
gauge function for the Hamiltonian Lie transform! @see Eqs.
~54! and ~29!#. Consequently, we have identified the pro
lem, which lies in the approximation made in Eqs.~30!–~32!.
The problem is resolved as follows.

Using Helmholtz’s theorem@28#, we decompose the per
turbation vector potentialdA into two parts; one partdAR is
rotational~vortex component! and the other partdAI is irro-
tational ~source component!,

dA~r ,t !5dAR~r ,t !1dAI~r ,t !, ~62a!

“•dAR~r ,t !50, ~62b!

dAI~r ,t !5“da~r ,t !. ~62c!

And the perturbation scalar potentialdF is accordingly de-
composed into two parts

dF~r ,t !5dFR~r ,t !1dFI~r ,t !, ~63a!

dFI~r ,t !52] tda~r ,t !. ~63b!

Writing the perturbation vector potential in covariant rep
sentation, we have
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dA~r ,t !5dAc~r ,t !“c1dAu~r ,t !“u1dAz~r ,t !“z

[@dAc
R~r ,t !1dAc

I~r ,t !#“c1@dAu
R~r ,t !

1dAu
I~r ,t !#“u1@dAz

R~r ,t !1dAz
I~r ,t !#“z,

~64a!

dAI~r ,t !5dAc
I~r ,t !“c1dAu

I~r ,t !“u1dAz
I~r ,t !“z

[@]cda~r ,t !#“c1@]uda~r ,t !#“u

1@]zda~r ,t !#“z. ~64b!

We shall also make the following decomposition:

dw̃5dw̃R1dw̃I, ~65a!

S15S1
R1S1

I , ~65b!

S G1
M

G1
U

G1
P
D 5S G1

M ,R

G1
U,R

G1
P,R

D 1S G1
M ,I

G1
U,I

G1
P,I
D , ~65c!

dw̃R5dF̃R2ċ0dAc̃
R2 u̇0dAũ

R2 ż0dAz̃
R2 j̇0dAR

•]jr̃,
~66a!

dw̃I5dF̃I2ċ0dÃc
I2 u̇0dÃu

I2 ż0dÃz
I2 j̇0dAI

•]jr̃
~66b!

52~] t1ċ0]c1 u̇0]u1 ż0]z1 j̇0]j!dã.
~66c!

In writing Eq. ~66c!, we have used Eqs.~63! and~64! and the
relation @14#

~]jr!•“da5]jda. ~67!

Substituting Eqs.~65a,b! and~66! into Eq.~29!, we found

~] t1ċ0]c1 u̇0]u1 ż0]z1 j̇0]j!FS1
R

S1
I G

5F dw̃R

2~] t1ċ0]c1 u̇0]u1 ż0]z1 j̇0]j!dã
G . ~68!

The solution toS1
I is readily found

S1
I52dã. ~69!

And the solution toS1
R is obtained by following the previous

approximation@4,7#

j̇0]jS1
R'dw̃R ~70a!

5dF̃R2ċ0dÃc
R2 u̇0dÃu

R2 ż0dÃz
R2 j̇0dAR

•]jr̃,
~70b!
4-10
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] tS1
R;ċ0]cS1

R;u̇0]uS1
R;ż0]zS1

R! j̇0]jS1
R;dF̃R

;ċ0dÃc
R;u̇0dÃu

R;ż0dÃz
R;j̇0dAR

•]jr̃. ~71!

With the solution ofS1 obtained above, we found th
generating vector for the Hamiltonian Lie transform,

G1
M ,R'^dAR

•]jr&1
1

B
~dF̃R2ċ0dÃc

R2 u̇0dÃu
R2 ż0dÃz

R!,

~72a!

G1
U,R'dFR, ~72b!

G1
P,R'dAz

R ; ~72c!

G1
M ,I50, ~73a!

G1
U,I5^dFI&, ~73b!

G1
P,I5^dAz

I&. ~73c!

In writing Eq. ~73a!, we have used Eq.~67! to obtain

^dAI
•]jr&5^“da•]jr&50. ~74!

Now, we can write down the gauge invariant represen
tion of GKE,

f 5 f 0~M ,U,P!1d f 1~dFR1^dFI&!
] f 0

]U

1~dAz
R1^dAz

I&!
] f 0

]P

1F ^dAR
•]jr&1

1

B
~dF̃R2ċ0dÃc

R2 u̇0dÃu
R

2 ż0dÃz
R!G ] f 0

]M
, ~75a!

d

dt
d f 52~]Uf 0] t2]Pf 0]z!~H̄1

R1H̄1
I!, ~75b!

H̄1
R[^dFR&2ċ0^dAc

R&2 u̇0^dAu
R&2 ż0^dAz

R&

2 j̇0^dAR
•]jr&, ~75c!

H̄1
I[^dFI&2ċ0^dAc

I&2 u̇0^dAu
I&2 ż0^dAz

I&. ~75d!

In writing Eq. ~75d!, we have used Eq.~74!.
Finally, we are at the position to verify that the perturb

distributionf in terms of guiding-center coordinates obtain
by Eq.~75! is really invariant with respect to the gauge tran
formation. This is accomplished as follows.

Using Eqs.~63! and ~64!, we write Eq.~75d! as
05640
-

-

H̄1
I[^dFI&2ċ0^dAc

I &2 u̇0^dAu
I&2 ż0^dAz

I& ~76a!

52
d

dt
^da&. ~76b!

Clearly,d f can be decomposed as

d f 5d f R1d f I, ~77a!

d

dt
d f R52~]Uf 0] t2]Pf 0]z!H̄1

R , ~77b!

d f I5~]Uf 0] t2]Pf 0]z!^da& ~77c!

52^dFI&]Uf 02^dAz
I&]Pf 0 .

~77d!

In writing Eq. ~77d!, we have used Eqs.~63! and~64!. Com-
bining Eqs.~75a! and ~77!, we obtained

f 5 f 01d f R1dFR ] f 0

]U
1dAz

R ] f 0

]P
1F ^dAR

•]jr&1
1

B
~dF̃R

2ċ0dÃc
R2 u̇0dÃu

R2 ż0dÃz
R!G ] f 0

]M
, ~78a!

d

dt
d f R52~]Uf 0] t2]Pf 0]z!H̄1

R , ~78b!

H̄1
R[^dFR&2ċ0^dAc

R&2 u̇0^dAu
R&2 ż0^dAz

R&

2 j̇0^dAR
•]jr&. ~78c!

Therefore, we have proved that the final perturbed distri
tion function f in terms of guiding-center coordinates is in
dependent of (dFI,dAI).

Noting that gauge transformation is equivalent to cho
ing different (dFI,dAI), one can immediately conclude tha
the new GKE, Eq.~75!, is really gauge invariant.

A particular example may be useful for the readers
understand the importance of gauge invariance. Cons
(dF,dA)5(dFI,dAI) or (dFR,dAR)5(0,0). For this par-
ticular case, our gauge invariant GKE, Eq.~75!, gives f
5 f 0, no perturbation to the distribution function. This can
easily understood as follows. Since (dF,dA)5(dFI,dAI)
gives (dE,dB)5(0,0), the system is physically at its equ
librium state. In this sense, (dFI,dAI) may be referred to as
the ‘‘imagined’’ perturbation to the scalar and vector pote
tials; they do not have any contribution to the perturbation
electromagnetic fields, (dE,dB).

Now, it is clear that the previous approximate@4,7# S1
@see, Eqs.~30! and ~31!# is only proper for the Coulomb
gauge@“•dA50; (dFI,dAI)5(0,0)#. The combination of
Eqs.~37! and~32! is equivalent to ignoring the superscriptR
in Eq. ~78!. With the Coulomb gauge chosen, the new gau
invariant GKE, Eq.~75!, recovers the combination of Eqs
~37! and~32! and consequently recovers the previous GKE
@1,8# after having picked back theVd•dA' term neglected in
Refs.@1,8#.
4-11
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In applying the gauge invariant GKE with chose
(dF,dA), one may decompose (dF,dA) into (dFR,dAR)
and (dFI,dAI) by using the following relations:

dA~r ,t !5dAR~r ,t !1dAI~r ,t !, ~79a!

dF~r ,t !5dFR~r ,t !1dFI~r ,t !; ~79b!

¹2da~r ,t !5“•dA~r ,t !; ~79c!

dAI~r ,t !5“da~r ,t !, ~79d!

dFI~r ,t !52] tda~r ,t !. ~79e!

If “•dA(r ,t)50, one may use Eq.~78! with the superscript
R in Eq. ~78! ignored.

According to the above comparisons and discussions,
~78! ~with the superscriptR ignored! agrees well with Ref.
@1#; the only difference lies in theVd•dA' term neglected in
Ref. @1#, and we have shown that this neglected term can
picked back within the frame of Ref.@1#. Since the GKE
presented in Ref.@1# is so well known and so widely used
we shall discuss the validity of this GKE in detail.

First, as we have pointed out in the last section,
Vd•dA' term should be picked back whendA'Þ0. After
having picked back theVd•dA' term, the GKE in Ref.@1# is
equivalent to Eq.~78! ~with the superscriptR ignored!. It is
useful to note that even ifdA'Þ0, neglecting theVd•dA'

term still can be taken as a good approximation, provid
that an appropriate gauge is chosen so thatVd•dA'

!VidAi . In other words, in neglecting theVd•dA' term,
one has to add a constraintVd•dA'!VidAi on the choice of
gauge. Note that the gauge chosen in Eq.~56! does not sat-
isfy the conditionVd•dA'!VidAi .

Strictly, Eq. ~78! ~with the superscriptR ignored! is cor-
rect only for the Coulomb gauge,“•dA(r ,t)50. In practice,
Eq. ~78! ~with the superscriptR ignored! may be taken as a
good approximation, when the following condition is sat
fied:

“•dA~r ,t !!u“3dA~r ,t !u. ~80!

Equation~80! may be referred to as an approximated Co
lomb gauge. When“•dA(r ,t);u“3dA(r ,t)u, Eq. ~78!
~with the superscriptR ignored! is still correct for some
particular problems. As we have pointed out in the beginn
of this section, Eq.~78! ~with the superscriptR ignored! is
not gauge invariant just because the gyrophase-depen
part of the perturbed distribution function is not gauge
variant. In other words, even if“•dA(r ,t)Þ0, Eq. ~78!
~with the superscriptR ignored! still correctly gives the
gyrophase-independent part of the perturbed distribu
function, and consequently it still correctly gives the pe
turbed mass density, the perturbed charge density, and
perturbed parallel current density. In a word, it is alwa
correct for shear Alfven wave problems.

We point out that it is easy to recover the gauge inva
ance in the previous modern GKE’s by modifying the so
tion of S1 ~the gauge function for the Hamiltonian Lie tran
form! in the way similar to ours. For classical GKE’s, notin
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that it is not clear what is equivalent in classical GKE to t
S1 function in modern GKE, and facing the daunting
lengthy tensor analysis employed in Ref.@1#, which is known
as the most concise presentation of the derivation of class
GKE’s, we have not tried to consider how to recover t
gauge invariance in the classical GKE’s. This may be left
a topic for future investigation.

To close this section, we briefly summarize the three li
iting cases of the gauge invariant representation of GKE,
~75!.

The eikonal form of the gauge invariant GKE reads

f 5 f 0~M ,U,P!1d f 1~dFR1J0dFc
I!

] f 0

]U

1~dAz
R1J0dAzc

I !
] f 0

]P
1

1

B F2
J1~k'r!

k'r/2
MdBc

1~dFR2J0dFc
R!2

dR

dt
•~dAR2J0dAc

R!G ] f 0

]M
,

~81a!

d

dt
d f 52~]Uf 0] t2]Pf 0]z!FJ0S dFc2

dR

dt
•dAcD

1
J1~k'r!

k'r/2
MdBcG . ~81b!

The DKE limit of the gauge invariant GKE is the same
Eq. ~46!.

The small-banana-width limit of the gauge invariant GK
is

f 5 f 0~M ,U,c!1d f 1G1
M]M f 01G1

U]Uf 02G1
P]c f 0 ,

~82a!

d

dt
d f 52~]Uf 0] t1]c f 0]z!~H̄1

R1H̄1
I! ~82b!

with (G1
M ,G1

U ,G1
P) given by Eq.~65c! and Eqs.~72! and

~73! and (H̄1
R ,H̄1

I) given by Eqs.~75c,d!.

VIII. SUMMARY AND DISCUSSIONS

We have systematically identified the canonical gy
center variables by using the canonical Hamiltonian L
transform perturbation method. With the canonical gy
center variables, we have established a new representatio
GKE in terms of the magnetic momentM, the total energyU,
and the canonical toroidal momentumP. The new represen
tation is invariant with respect to the gauge transformation
perturbation fields. In the new representation of GKE,
effects of toroidal symmetry breaking are explicitly reveale
Every term involved in the GKE presented in the new re
resentation has its own unambiguous physical interpretat
Transformed back to the guiding-center coordinates,
adiabatic part of the perturbed distribution function is co
pletely determined by the perturbations of (M ,U,P). The
nonadiabatic part of the distribution functiond f is com-
4-12
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pletely determined by the time rates of change ofU and P
due to the time dependence and toroidal angle depend
introduced by the perturbation of fields. It is clearly and r
orously shown that the free energy associated w
]Pf 0(M ,U,P) does not have any nonadiabatic linear drivi
to any axisymmetric modes, which is an important issue
axisymmetric tokamak plasma physics.

There are two papers devoted to represent the GKE@10# or
DKE@11# in a similar way. In Ref.@10#, the eikonal ansatz
was used, so that it cannot be used for electromagn
modes with arbitrary mode numbers. Moreover, it is n
clear in Ref.@10# what kind of roles the perturbed canonic
toroidal momentum plays in the gyrokinetic theory, and t
physical interpretation of the adiabatic part of perturbed d
tribution function defined in Ref.@10# is not as simple and
clear as in the new representation developed in this pape
addition, the GKE in Ref.@10# is correct only for a gauge
chosen so thatVd•dA'50 and“•dA50, or approximately
correct when an appropriate gauge is chosen so thatVd
•dA'!VidAi and“•dA!u“3dAu. In Ref. @11#, the FLR
effects were dropped in obtaining the DKE. Therefore,
previous theories@10,11# shall be regarded as limiting case
of the new representation of GKE. And indeed, we ha
verified that in the corresponding limits, the new represen
tion of the GKE recovers the previous results@10,11#. We
have also provided the small-banana-width version of
new representation of GKE.

The Vd•dA' term neglected in previous theories@1–10#
has been systematically retained in this representation
GKE. It has been shown that retaining theVd•dA' term is
important to make this representation of GKE invariant w
respect to the gauge transformation of the perturbation fie
in contrast to the previous theories@1–10#, whose gauge
variance has not been well recognized and discussed so
And we have shown how to pick back theVd•dA' term in
the previous theories@1,8#. We also note that theVd•dA'

term can be dropped out of the GKE with an appropri
gauge chosen to satisfyVd•dA'!VidAi .

As we have shown, even for ideal MHD shear Alfve
wave perturbations, gauge invariance can provide consi
able convenience. For high beta~ratio of plasma pressure t
magnetic field pressure! tokamaks, effects of compression
Alfven wave may be important. In this case, usually we ha
both finite dAi and finite dA' . If one recognizes that the
s-

05640
ce
-
h

n

tic
t

e
-

In

e

e
-

e

of

s,

ar.

e

r-

e

previous GKE’s@1–10# have to be used with the Coulom
gauge chosen~note that it has not been well recognized
far; among Refs.@1–10#, only Ref. @2# pointed out that the
Coulomb gauge should be chosen in applying the GKE p
sented there! and still insists to use the previous GKE’s, firs
one has to carefully choose the Coulomb gauge (“•dA
50) or at least an approximate Coulomb gauge (“•dA
!u“3dAu) and second, one has to pick back theVd•dA'

term in the way discussed in the main text of this paper
make sure that the chosen gauge satisfiesVd•dA'

!VidAi . But in general, it may be inconvenient to use t
approximate Coulomb gauge satisfyingVd•dA'!VidAi .
Clearly, for this case, the gauge invariant representation
GKE shall provide considerable convenience.

For readers who may wish to reexamine those wo
based on the previous gauge variant GKE’s, we propose
following criteria.

~1! dA50 ~electrostatic modes!.
~2! “•dA50 or “•dA!u“3dAu, and Vd•dA'50 or

Vd•dA'!VidAi .
~3! Vd•dA'50 or Vd•dA'!VidAi , and “•dA

;u“3dAu, but the given physical problem does not involv
the odd moments ofv' ~for example, the perturbed perpen
dicular current density!.

~4! v* }]z is used.
~5! v* }]u is used, butv* }]u is equivalent tov* }]z .
If all of ~1!–~3! are not satisfied or~4! and ~5! are not

satisfied, then the work based on the previous gauge va
GKE’s may need careful reconsideration. Of course, we
pect that most of those works based on the previous ga
variant GKE’s satisfy one of~1!–~3! and one of~4! and~5!,
and consequently do not need any reconsideration from
viewpoint.
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